Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017

The potential of photovoltaics (PV) has not yet been exhausted. Both industry and research continue to work intensively on increasing the efficiency and reducing the costs of solar cells, the basic component of every PV power plant. Now researchers at Fraunhofer ISE have produced a multicrystalline silicon solar cell with 21.9 percent efficiency, successfully bringing the world record back to Freiburg.

Higher efficiencies and optimized processing steps are decisive for decreasing the cost of solar electricity even further. Both of these are an integral part of the photovoltaic research at the Fraunhofer Institute for Solar Energy Systems.


The multicrystalline world record solar cell made of n-type HPM silicon with an area of 2 cm x 2 cm.

©Fraunhofer ISE

With its newest efficiency value, the Freiburg researchers have once again broken a world record: A multicrystalline silicon solar cell converts 21.9 percent of the incident sunlight into electricity. As in the years from 2004 to 2015, Fraunhofer ISE again holds the world’s record for multicrystalline silicon. The record solar cell consists of n-type high performance multicrystalline silicon, or HP mc-Si. Compared to p-type silicon, this material shows a higher tolerance to impurities, especially iron.

The industrial production today uses multicrystalline p-type silicon material with average solar cell efficiencies of about 19 percent. The new material and technology approaches applied by Fraunhofer ISE for the record cell have the potential to improve the efficiency of multicrystalline silicon even further in the near future.

From Material to Cell Technology

“We are very happy about this excellent result, which is due largely to the fact that Fraunhofer ISE’s expertise runs along the entire value chain of silicon photovoltaics,” says the visibly pleased Institute Director, Dr. Andreas Bett. “At the Institute our expertise spans the entire range from the crystallization of silicon through to the quality assurance of PV power plants. The research areas of material development, characterization and cell technology all played a part in the development of the world record cell.”

The various research groups at Fraunhofer ISE consulted continuously, optimizing the material and the cell process in tandem. Dr. Stephan Riepe, Head of the Group “Silicon – Crystallization and Epitaxy,” explains the procedure as follows: “In our Silicon Material TEchnology Center SIMTEC, we adjusted the crystallization process with the goal of creating a material optimized for the planned solar cell processing procedure. We worked closely and in constant exchange with our colleagues until we all achieved our common target of world record efficiency.”

The work of the ambitious researchers at Fraunhofer ISE, however, continues further. The “multiTOP” project, in which the record cell was achieved, continues to run up to March 2018. The project is headed by Dr. Jan Benick, Team Leader of Innovative Clean Room Technologies for High Efficiency Silicon Solar Cells. He looks into the future: “Our goal is to develop an advanced cell technology for the n-type multicrystalline wafer that really demonstrates its full potential. The question is, how far can we get to closing the efficiency gap to monocrystalline material.”

The colleagues in solar cell characterization acted as a decisive link between the researchers in materials and cell technology. Dr. Martin Schubert, Department Head of Characterization and Simulation assumed the role of navigator: “With our characterization work, we were able to help our colleagues in materials to improve the material quality and to customize it for the production process. On the other side, we were able to provide our colleagues in solar cell development with tips on where the relevant losses in the current cell technology can be found.”


35 Years of Integrated Solar Energy Research

In addition to the cross-sectional cooperation between the ISE specialists in fields of materials, characterization and cell technologies, Fraunhofer ISE also applied its past developments in creating the new world record cell. “The TOPCon technology, developed at Fraunhofer ISE, was used for the back side contacting of the record cell. With this technology we were able to achieve a world record efficiency of 25.3 % last year for both-sides contacted monocrystalline silicon solar cells,” explains Dr. Martin Hermle, Department Head of High Efficiency Silicon Solar Cells at Fraunhofer ISE.

The TOPCon technology has a passivated backside contact, applied over the entire rear surface without patterning. This simplifies the manufacturing process and results in higher efficiencies at the same time. The newest world record shows that the TOPCon technology is suited both for mono and multicrystalline silicon, opening up its potential for the entire silicon market. Over 35 years of R&D along the entire value chain has made Fraunhofer ISE one of the top research institutes for solar cells throughout the world.

The project “multiTOP” was funded by the German Federal Ministry for Economic Affairs and Energy BMWi.

Weitere Informationen:

https://www.ise.fraunhofer.de/en.html

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>