Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“move“ – on course for the mobility of the future


The demonstration and technology platform “move” enables Empa researchers to develop new vehicle drive concepts with significantly lower CO2 emissions and test them in practice. It uses surplus electricity from photovoltaic plants or hydropower stations as an energy source. On the one hand, this enables batteries in electric cars to be charged. On the other hand, the electricity can also be converted into hydrogen for fuel cell vehicles or synthetic methane for natural gas/biogas vehicles.

On November 23, 2015, Empa officially opened the research and technology transfer platform “move” in the presence of renowned energy and mobility experts. Over the next few years, Empa will use the platform to study how surplus renewable electricity can be converted into fuel for cars, utility vehicles and machinery in the summertime and thus be rendered utilizable as energy. The name “move” doesn’t just stand for motorized mobility, but also the switch from fossil to renewable energy – all the way to the realization of a closed carbon cycle modeled on nature.

The demonstration and technology platform “move” enables Empa researchers to develop and test new vehicle drive concepts with significantly lower CO2 emissions. It works with surplus electricity.


Two important insights paved the way for “move”: Firstly, mobility is responsible for approximately 40 percent of Switzerland’s CO2 emissions. These emissions can be reduced the most significantly if we switch to renewable energy as source of fuel for vehicles.

Secondly, the expansion of solar power production evidently leads to large quantities of surplus electricity in the summer months, which are difficult to use on the electricity market. Converting it into synthetic fuel for mobility, however, actually makes this possible.

These two factors prompted Empa to launch a large-scale project, which demonstrates the switch from fossil to renewable energy throughout the entire value-added chain. This energy supply is coupled with efficient electric, hybrid, fuel cell and gas vehicles.

Collaboration with ETH Zurich, industry and authorities

At the inauguration of “move”, Konstantinos Boulouchos from the Institute for Energy Technology at ETH Zurich, presented an energy overview with numerous challenges, but also fresh opportunities. ETH Zurich and Empa collaborate in the field of mobility and therefore cover a broad spectrum from basic and applied research to demonstration plants. Synthetic, electricity-based fuels in efficient drives is one of the researchers’ visions of the future.

The ceremony was opened by Brigitte Buchmann, Head of the Department Mobility, Energy and Environment and a member of Empa’s Board of Directors. She is the strategic head of the large-scale project and uses the platform to render issues in the fields of mobility, energy and the environment and approaches to solving them more transparent.

Empa CEO Gian-Luca Bona referred to the significance of technology transfer platforms like “move” in the context of complete solutions. Research in labs and its realization in demonstrators complement each other ideally and are a crucial aspect of the technology transfer from academic research to the industrial partners. “Only if the latest research results are also – quite literally – brought onto the roads can we prepare innovative and practical solutions in the mobility sector for the market,” says Bona. This is precisely where “move” comes in.

Walter Steinmann, Director of the Swiss Federal Office of Energy (SFOE), highlighted the importance of pilot and demonstration plants for the Energy Strategy 2050. The SFOE is involved in funding “move” to promote efficient, sustainable technologies. Lothar Ziörjen, Mayor of the energy city Dübendorf, reported on the scheduled field trial with the hydrogen-powered road sweeper vehicle and the major benefits of applied research projects for its realization. Hans Magits, Chief Technical Officer at the compressor manufacturer AtlasCopco, one of “move’s” main partners, stressed the merit of such platforms for the further development and testing of new technologies.

Sustainable driving following nature’s cue

“Nature as a role model!“ – According to Christian Bach, Head of Empa’s Automotive Powertrain Technologies Laboratory, the inspiration behind “move“. Plants have been using sunlight, water and CO2 to supply themselves sustainably with energy for millions of years. “move” aims to reveal how this concept can be realized for individual mobility. The project doesn’t just focus on one, specific drive concept, but rather integrates a broad range of drive technologies from electric and hybrid cars to fuel cell and gas vehicles. As Bach explains, this enables the advantages of the various drives to be exploited accordingly for different applications. However, the researchers won’t just make energetic and ecological comparisons in “move”; they will also study the economic viability of the various concepts together with their implementation partners.

At the end of the ceremony, Urs Cabalzar, the technical project manager on “move“, gave a tour of the plant. In the current expansion phase, renewable electricity is converted into hydrogen in an electrolysis plant, compressed to 44 bars and stored in compressed gas containers. The hydrogen can then be used to refuel fuel cell vehicles directly or be mixed with natural/biogas in a separate fuel pump.

«move» should also keep on developing in future. It‘s already due for an expansion shortly after the inauguration. A 700-bar refueling station for hydrogen cars is planned. The catalytic conversion of hydrogen and CO2 into methane, which can be used in gas vehicles, and the temporary storage of surplus solar power in a network battery to charge electric vehicles overnight is also in the pipeline.

«move» – demonstration and technology transfer platform for the mobility of the future
«move» is an Empa demonstration platform backed by numerous partners from research, industry and the public sector. Empa’s main partners here are the ETH Board, the Swiss Federal Office of Energy (SFOE), the City of Dübendorf, Glattwerk AG and the companies AtlasCopco, H2 Energy and Hyundai. These are joined by a series of academic and industrial partners who are involved in individual projects within the scope of the demonstrator.

Weitere Informationen:

Rainer Klose | EMPA

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>