Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission possible: This device will self-destruct when heated

22.05.2015

Where do electronics go when they die? Most devices are laid to eternal rest in landfills. But what if they just dissolved away, or broke down to their molecular components so that the material could be recycled?

University of Illinois researchers have developed heat-triggered self-destructing electronic devices, a step toward greatly reducing electronic waste and boosting sustainability in device manufacturing. They also developed a radio-controlled trigger that could remotely activate self-destruction on demand.


A device is remotely triggered to self-destruct. A radio-frequency signal turns on a heating element at the center of the device. The circuits dissolve completely.

Credit: Scott White, University of Illinois

The researchers, led by aerospace engineering professor Scott R. White, published their work in the journal Advanced Materials.

"We have demonstrated electronics that are there when you need them and gone when you don't need them anymore," White said. "This is a way of creating sustainability in the materials that are used in modern-day electronics. This was our first attempt to use an environmental stimulus to trigger destruction."

White's group teamed up with John A. Rogers, a Swanlund chair in materials science and engineering and director of the Frederick Seitz Materials Laboratory at Illinois. Rogers' group pioneered transient devices that dissolve in water, with applications for biomedical implants. Together, the two multi-disciplinary research groups have tackled the problem of using other triggers to break down devices, including ultraviolet light, heat and mechanical stress. The goal is to find ways to disintegrate the devices so that manufacturers can recycle costly materials from used or obsolete devices or so that the devices could break down in a landfill.

The heat-triggered devices use magnesium circuits printed on very thin, flexible materials. The researchers trap microscopic droplets of a weak acid in wax, and coat the devices with the wax. When the devices are heated, the wax melts, releasing the acid. The acid dissolves the device quickly and completely.

To remotely trigger the reaction, researchers embedded a radio-frequency receiver and an inductive heating coil in the device. The user can send a signal to cause the coil to heat up, which melts the wax and dissolves the device.

Watch a video of the researchers demonstrating and explaining the devices at https://www.youtube.com/watch?v=Tdj915k5gKg.

"This work demonstrates the extent to which clever chemistries can qualitatively expand the breadth of mechanisms in transience, and therefore the range of potential applications," Rogers said.

The researchers can control how fast the device degrades by tuning the thickness of the wax, the concentration of the acid, and the temperature. They can design a device to self-destruct within 20 seconds to a couple of minutes after heat is applied.

The devices also can degrade in steps by encasing different parts in waxes with different melting temperatures. This gives more precise control over which parts of a device are operative, creating possibilities for sophisticated devices that can sense something in the environment and respond to it.

White's group has long been concerned with device sustainability and has pioneered methods of self-healing to extend the life of materials.

"We took our ideas in terms of materials regeneration and flipped it 180 degrees," White said. "If you can't keep using something, whether it's obsolete or just doesn't work anymore, we'd like to be able to bring it back to the building blocks of the material so you can recycle them when you're done, or if you can't recycle it, have it dissolve away and not sit around in landfills."

###

White and Rogers are both affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. The Defense Advanced Research Project Agency and the National Science Foundation supported this work.

Editor's note: To reach Scott R. White, call (217) 333-1077; email: swhite@illinois.edu.

The paper, "Thermally triggered degredation of transient electronic devices," is available online at http://onlinelibrary.wiley.com/doi/10.1002/adma.201501180/full.

A downloadable image gallery is available at https://uofi.box.com/selfdestruct.

Media Contact

Liz Ahlberg
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>