Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromachining: Inclinations sounded out

15.05.2013
A novel type of tilt sensor may extend the capabilities of ultrasonic devices already used in a range of applications

Echolocation is a powerful technique that uses sound or ultrasound waves to locate objects and surfaces. Ships and submarines, for example, use it to avoid collisions, and dolphins and microbats use it to locate prey.


Dolphins use echolocation to locate prey and navigate. Researchers have harnessed the same principle to determine the inclination of millimeter-sized ultrasonic sensors.

© Dorling Kindersley RF/Thinkstock

Hongbin Yu and co-workers from the A*STAR Institute of Microelectronics, Singapore, have now used echolocation to measure the inclination of millimeter-sized ultrasonic sensors. In this new setting, their technique should extend the capabilities of devices that already use ultrasonic components, whether for locating defects in materials, visualizing anatomical structures or determining range.

Yu and his co-workers built on the success that so-called ‘capacitive micromachined ultrasonic transducers’ (CMUTs) have achieved over the past decade in generating and detecting ultrasound signals. These devices are fabricated using silicon micromachining technology, so the components are very compact and can be conveniently integrated with standard electronics components, which are also based on silicon.

“Our main goal was to explore a new application of the CMUT device,” says Yu. Consequently, the researchers harnessed these ultrasonic components for measuring tilt angles. They used three micromachined CMUTs — two senders and a common receiver — each measuring less than a tenth of a millimeter across. To test this array, they immersed it in a bath filled with oil. As they tilted the device, the oil surface stayed level — in the same manner that the water surface in a tilted glass would remain horizontal. However, the distances between the surface and the sensors at the bottom changed such that one sensor became closer to the surface than the other.

By measuring how long it took the ultrasound waves to travel from each of the senders to the receiver, via the oil surface where the waves were reflected, Yu and his co-workers could accurately determine the distances between the sensors and the surface. They could then calculate the tilt angle that the CMUT array had relative to the oil surface.

As many devices already contain ultrasonic components, the new sensor should be useful in a number of applications, according to Yu. “As one example, in an automotive robotic arm equipped with ultrasound transducers for fault detection, a tilt-sensing function should help improve the arm-control accuracy without greatly increasing the complexity of the device,” he explains.

Other areas where tilt-angle measurements are important include level determination for instrumentation and motion-state monitoring. With the team’s innovation, such functionality may now be added to ultrasonic medical-imaging and non-destructive materials-testing devices.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Yu, H., Guo, B., Haridas, K., Lin, T.-H., Cheong, J. H. et al. Capacitive micromachined ultrasonic transducer based tilt sensing. Applied Physics Letters 101, 153502 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6665
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>