Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methodology could lead to more sustainable manufacturing systems

14.10.2015

Engineers at Oregon State University have developed a new "sustainable development methodology" to help address a social and regulatory demand for manufacturing processes that more effectively consider their economic, environmental and social impacts.

The work was recently published in the Journal of Cleaner Production. It outlines a way to help designers and manufacturing engineers carefully consider all the ramifications of their design decisions, and to evaluate the possible different ways that a product could be built - before it ever hits the assembly line.


This bevel gear component is made of solid steel, one approach to producing the part.

(Graphic courtesy of Oregon State University)

"There's a lot of demand by consumers, workers and companies who want to make progress on the sustainability of products and manufacturing processes," said Karl Haapala, an associate professor in the OSU College of Engineering.

"There's usually more than one way to build a part or product," he said. "With careful analysis we can identify ways to determine which approach may have the least environmental impact, lowest cost, least waste, or other advantages that make it preferable to a different approach."

This movement, researchers say, evolved more than 20 years ago from an international discussion at the United Nations Conference on Environment and Development, which raised concerns about the growing scarcity of water, depletion of non-renewable sources of energy, human health problems in the workplace, and other issues that can be linked to unsustainable production patterns in industry.

The challenge, experts say, is how to consider the well-being of employees, customers, and the community, all while producing a quality product and staying economically competitive. It isn't easy, and comprehensive models that assess all aspects of sustainability are almost nonexistent.

"With current tools you can analyze various aspects of an operation one at a time, like the advantages of different materials, transportation modes, energy used, or other factors," Haapala said. "It's much more difficult to consider all of them simultaneously and come out with a reasonable conclusion about which approach is best."

To aid that effort, OSU researchers created a new methodology that incorporates unit process modeling and an existing technique called life-cycle inventory. This allowed them to quantify a selected set of sustainability metrics, and ask real-world questions. Should the product use a different material? Would running the production line faster be worth the extra energy used or impact on worker health and safety? Which approach might lead to injuries and more lost work? How can scrap and waste be minimized? Which design alternative will generate the least greenhouse gas emissions?

To illustrate this approach in the study, the researchers used three hypothetical "bevel gear" alternatives, a common part produced in the aircraft and automotive industry. Their six-step system considered energy consumption, water use, effluent discharge, occupational health and safety, operating cost, and other factors to evaluate the use of different materials and manufacturing processes - and ultimately concluded through mathematical modeling which of three possible designs was the most sustainable.

"When you make decisions about what is best, you may make value judgements about what aspect of sustainability is most important to you," Haapala said. "But the modeling results have the potential to assist designers in performing those evaluations and in understanding the tradeoffs alongside other aspects of the manufacturing process."

This work was supported by the Boeing Company and the Oregon Metals Initiative.

This assessment approach, when further researched and tested, should be applicable to a wide range of products during the design decision-making process, researchers said in the study.

Karl Haapala | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>