Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methodology could lead to more sustainable manufacturing systems

14.10.2015

Engineers at Oregon State University have developed a new "sustainable development methodology" to help address a social and regulatory demand for manufacturing processes that more effectively consider their economic, environmental and social impacts.

The work was recently published in the Journal of Cleaner Production. It outlines a way to help designers and manufacturing engineers carefully consider all the ramifications of their design decisions, and to evaluate the possible different ways that a product could be built - before it ever hits the assembly line.


This bevel gear component is made of solid steel, one approach to producing the part.

(Graphic courtesy of Oregon State University)

"There's a lot of demand by consumers, workers and companies who want to make progress on the sustainability of products and manufacturing processes," said Karl Haapala, an associate professor in the OSU College of Engineering.

"There's usually more than one way to build a part or product," he said. "With careful analysis we can identify ways to determine which approach may have the least environmental impact, lowest cost, least waste, or other advantages that make it preferable to a different approach."

This movement, researchers say, evolved more than 20 years ago from an international discussion at the United Nations Conference on Environment and Development, which raised concerns about the growing scarcity of water, depletion of non-renewable sources of energy, human health problems in the workplace, and other issues that can be linked to unsustainable production patterns in industry.

The challenge, experts say, is how to consider the well-being of employees, customers, and the community, all while producing a quality product and staying economically competitive. It isn't easy, and comprehensive models that assess all aspects of sustainability are almost nonexistent.

"With current tools you can analyze various aspects of an operation one at a time, like the advantages of different materials, transportation modes, energy used, or other factors," Haapala said. "It's much more difficult to consider all of them simultaneously and come out with a reasonable conclusion about which approach is best."

To aid that effort, OSU researchers created a new methodology that incorporates unit process modeling and an existing technique called life-cycle inventory. This allowed them to quantify a selected set of sustainability metrics, and ask real-world questions. Should the product use a different material? Would running the production line faster be worth the extra energy used or impact on worker health and safety? Which approach might lead to injuries and more lost work? How can scrap and waste be minimized? Which design alternative will generate the least greenhouse gas emissions?

To illustrate this approach in the study, the researchers used three hypothetical "bevel gear" alternatives, a common part produced in the aircraft and automotive industry. Their six-step system considered energy consumption, water use, effluent discharge, occupational health and safety, operating cost, and other factors to evaluate the use of different materials and manufacturing processes - and ultimately concluded through mathematical modeling which of three possible designs was the most sustainable.

"When you make decisions about what is best, you may make value judgements about what aspect of sustainability is most important to you," Haapala said. "But the modeling results have the potential to assist designers in performing those evaluations and in understanding the tradeoffs alongside other aspects of the manufacturing process."

This work was supported by the Boeing Company and the Oregon Metals Initiative.

This assessment approach, when further researched and tested, should be applicable to a wide range of products during the design decision-making process, researchers said in the study.

Karl Haapala | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>