Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Accelerates Stability Testing of Soy-Based Biofuel

15.01.2009
NIST researchers have developed a method to accelerate stability testing of biodiesel fuel made from soybeans and identified additives that enhance stability at high temperatures, work that could help overcome a key barrier to the practical use of biofuels.

The National Institute of Standards and Technology (NIST) has developed a method to accelerate stability testing of biodiesel fuel made from soybeans and also identified additives that enhance stability at high temperatures. The results, described in a new paper,* could help overcome a key barrier to practical use of biofuels.

Both oxidation and heating can cause biodiesel to break down, adversely affecting performance. These two effects usually are analyzed separately, but NIST chemists developed a method to approximate both effects at the same time while also analyzing fluid composition. NIST’s “advanced distillation curve” method could accelerate and simplify testing of biodiesels, according to lead author Tom Bruno. NIST researchers used the new method to demonstrate the effectiveness of three additives in reducing oxidation of biodiesel at high temperatures, as would occur in aviation fuels.

Biodiesel—which can be prepared from vegetable oil, animal fats, used cooking oil, or microalgae—is a potential replacement or extender for petroleum-based diesel fuel. Biodiesel offers several advantages, including renewability, the potential for domestic production, biodegradability, and decreased emissions of carbon monoxide and particulate matter. Biodiesel also has several serious disadvantages, including increased nitrogen oxide emissions and chemical instability, especially at higher temperatures.

Antioxidants often are added to vegetable oils to retard oxidation during storage. The NIST work may be the first to enhance stability of biofuel at high temperatures, Bruno said. The study focused on three compounds, THQ, t-decalin and tetralin,** that help neutralize highly reactive “free radicals” formed at temperatures above 300 degrees C. Test results showed that all three compounds stabilized biodiesel. As expected from studies of aviation fuels, THQ and t-decalin perform similarly and outperform tetralin. For solutions containing 1 percent additive, THQ performed best overall.

A distillation curve charts the percentage of a mixture that evaporates as a sample is slowly heated. Because the different components of a complex mixture typically have different boiling points, a distillation curve gives a good measure of the relative amount of each component. NIST chemists enhanced the traditional technique by improving precision and control of temperature measurements and adding the capability to analyze the chemical composition of each boiling fraction.

To adapt the method for unstable fluids such as biodiesels, the authors made repeated distillation curves of samples and quantified the variation in parameters such as temperature for each distillate fraction across the different runs of the experiment. These data were averaged over the entire distillation curve to identify the range of variations that might occur. This range was extended to theoretically model the potential oxidative and thermal decomposition of the samples.

Two authors of the new paper participated in NIST’s Summer Undergraduate Research Fellowship (SURF) program.

* T.J. Bruno, A. Wolk and A. Naydich. Stabilization of biodiesel fuel at elevated temperature with hydrogen donors: Evaluation with the advanced distillation curve method. Energy & Fuels. Articles ASAP (Web), January 2, 2009. DOI: 10.1021/ef800740d.

* THQ: 1,2,3,4-tetrahydroquinoline; t-decalin: transdecahydronaphthalene; tetralin: 1,2,3,4-tetrahydronaphthalene.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>