Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Accelerates Stability Testing of Soy-Based Biofuel

15.01.2009
NIST researchers have developed a method to accelerate stability testing of biodiesel fuel made from soybeans and identified additives that enhance stability at high temperatures, work that could help overcome a key barrier to the practical use of biofuels.

The National Institute of Standards and Technology (NIST) has developed a method to accelerate stability testing of biodiesel fuel made from soybeans and also identified additives that enhance stability at high temperatures. The results, described in a new paper,* could help overcome a key barrier to practical use of biofuels.

Both oxidation and heating can cause biodiesel to break down, adversely affecting performance. These two effects usually are analyzed separately, but NIST chemists developed a method to approximate both effects at the same time while also analyzing fluid composition. NIST’s “advanced distillation curve” method could accelerate and simplify testing of biodiesels, according to lead author Tom Bruno. NIST researchers used the new method to demonstrate the effectiveness of three additives in reducing oxidation of biodiesel at high temperatures, as would occur in aviation fuels.

Biodiesel—which can be prepared from vegetable oil, animal fats, used cooking oil, or microalgae—is a potential replacement or extender for petroleum-based diesel fuel. Biodiesel offers several advantages, including renewability, the potential for domestic production, biodegradability, and decreased emissions of carbon monoxide and particulate matter. Biodiesel also has several serious disadvantages, including increased nitrogen oxide emissions and chemical instability, especially at higher temperatures.

Antioxidants often are added to vegetable oils to retard oxidation during storage. The NIST work may be the first to enhance stability of biofuel at high temperatures, Bruno said. The study focused on three compounds, THQ, t-decalin and tetralin,** that help neutralize highly reactive “free radicals” formed at temperatures above 300 degrees C. Test results showed that all three compounds stabilized biodiesel. As expected from studies of aviation fuels, THQ and t-decalin perform similarly and outperform tetralin. For solutions containing 1 percent additive, THQ performed best overall.

A distillation curve charts the percentage of a mixture that evaporates as a sample is slowly heated. Because the different components of a complex mixture typically have different boiling points, a distillation curve gives a good measure of the relative amount of each component. NIST chemists enhanced the traditional technique by improving precision and control of temperature measurements and adding the capability to analyze the chemical composition of each boiling fraction.

To adapt the method for unstable fluids such as biodiesels, the authors made repeated distillation curves of samples and quantified the variation in parameters such as temperature for each distillate fraction across the different runs of the experiment. These data were averaged over the entire distillation curve to identify the range of variations that might occur. This range was extended to theoretically model the potential oxidative and thermal decomposition of the samples.

Two authors of the new paper participated in NIST’s Summer Undergraduate Research Fellowship (SURF) program.

* T.J. Bruno, A. Wolk and A. Naydich. Stabilization of biodiesel fuel at elevated temperature with hydrogen donors: Evaluation with the advanced distillation curve method. Energy & Fuels. Articles ASAP (Web), January 2, 2009. DOI: 10.1021/ef800740d.

* THQ: 1,2,3,4-tetrahydroquinoline; t-decalin: transdecahydronaphthalene; tetralin: 1,2,3,4-tetrahydronaphthalene.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>