Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Matched “hybrid” systems may hold key to wider use of renewable energy


The use of renewable energy in the United States could take a significant leap forward with improved storage technologies or more efforts to “match” different forms of alternative energy systems that provide an overall more steady flow of electricity, researchers say in a new report.

Historically, a major drawback to the use and cost-effectiveness of alternative energy systems has been that they are too variable – if the wind doesn’t blow or the sun doesn’t shine, a completely different energy system has to be available to pick up the slack. This lack of dependability is costly and inefficient.

But in an analysis just published in The Electricity Journal, scientists say that much of this problem could be addressed with enhanced energy storage technology or by developing “hybrid” systems in which, on a broader geographic scale, one form of renewable energy is ramping up even while the other is declining.

“Wind energy is already pretty cost-competitive and solar energy is quickly getting there,” said Anna Kelly, a graduate student in the School of Public Policy at Oregon State University, and an energy policy analyst. “The key to greater use of these and other technologies is to match them in smart-grid, connected systems.

“This is already being done successfully in a number of countries and the approach could be expanded.”

For instance, the wind often blows more strongly at night in some regions, Kelly said, and solar technology can only produce energy during the day. By making more sophisticated use of that basic concept in a connected grid, and pairing it with more advanced forms of energy storage, the door could be opened for a much wider use of renewable energy systems, scientists say.

“This is more than just an idea, it’s a working reality in energy facilities around the world, in places like Spain, Morocco and China, as well as the U.S.,” Kelly said. “Geothermal is being paired with solar; wind and solar with lithium-ion batteries; and wind and biodiesel with batteries. By helping to address the price issue, renewable energy is being produced in hybrid systems by real, private companies that are making real money.”

Advanced energy storage could be another huge key to making renewable energy more functional, and one example is just being developed in several cooperating states in the West. Electricity is being produced by efficient wind farms in Wyoming; transmitted to Utah where it’s being stored via compressed air in certain rock formations; and ultimately used to help power Los Angeles.

This $8 billion system could be an indicator of things to come, since compressed air can rapidly respond to energy needs and be readily scaled up to be cost-competitive at a significant commercial level.

“There are still a number of obstacles to overcome,” said Joshua Merritt, a co-author on the report and also a graduate student in mechanical engineering and public policy at OSU. “Our transmission grids need major improvements so we can more easily produce energy and then send it to where it’s needed. There are some regulatory hurdles to overcome. And the public has to more readily accept energy systems like wind, wave or solar in practice, not just in theory.”

The “not in my back yard” opposition to renewable energy systems is still a reality, the researchers said, and there are still some environmental concerns about virtually any form of energy, whether it’s birds killed by wind turbine rotors, fish losses in hydroelectric dams or chemical contaminants from use of solar energy.

The near future may offer more options, the researchers said. Advanced battery storage technologies are becoming more feasible. Wave or tidal energy may become a real contributor, and some of those forces are more predictable and stable by definition. And the birth of small, modular nuclear reactors – which can be built at lower cost and produce no greenhouse gas emissions – could play a significant role in helping to balance energy outflows from renewable sources.

The long-term goal, the report concluded, is to identify technologies that can work in a hybrid system that offers consistency, dependability and doesn’t rely on fossil fuels. With careful matching of systems, improved transmission abilities and some new technological advances, that goal may be closer than realized, they said.

“With development, the cost of these hybrid systems will decrease and become increasingly competitive, hopefully playing a larger role in power generation in the future,” the researchers wrote in their conclusion.

About Oregon State University: OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon’s only university to hold both the Carnegie Foundation’s top designation for research institutions and its prestigious Community Engagement classification. Its more than 26,000 students come from all 50 states and more than 90 nations. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.

Joshua Merritt | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Did you know that specialty light sources are being used for water analysis?
22.03.2018 | Heraeus Noblelight GmbH

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>