Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many antennas, multiple benefits

26.01.2015

Deploying many low-power, compact antenna nodes to handle cellular traffic can make wireless communication more reliable and adaptable

A concept that balances large-scale installations of low-cost and low-power antennas to boost cellular coverage in difficult environments will also provide better connectivity to more users. Developed by A*STAR, this new architecture for wireless communications can help service providers meet growing demands for increased network capacity and improved energy efficiency [1].


By combining large distributions of compact antenna nodes with fast fiber optic communication, researchers have developed a new wireless infrastructure ready for intense future demands. © 2014 A*STAR Institute for Infocomm Research

Jingon Joung, Yeow Chia and Sumei Sun from the A*STAR Institute for Infocomm Research in Singapore sought to combine two state-of-the-art wireless technologies into a novel type of antenna system. The first technology, known as large-scale multiple-input multiple-output (L-MIMO), uses numerous ‘co-located’ antennas to significantly reduce relative noise levels inside devices. The second, called distributed-antenna systems (DAS), replaces conventional high-power antennas with strategically placed compact nodes that can split up and transmit signals more efficiently due to improved line-of-sight pathways.

The team’s strategy, known as large-scale distributed-antenna systems (L-DAS), seeks to implement DAS with a massive installation base, as seen with MIMO antennas (see image). To realize this goal, however, required a way to evaluate the costs and benefits associated with this innovative infrastructure — simply increasing the number of antenna nodes does not automatically improve wireless network efficiency.

Using a complex computer simulator, the researchers quantified the performances of multi-user L-DAS networks by evaluating their energy efficiencies (that is, the number of bits decoded per joule). According to Joung, modeling energy efficiency is challenging because L-DAS antennas communicate in two ways — wirelessly or through fiber-optic cables — and each channel has different and often proprietary power requirements.

“Another challenge is implementing real-world parameters in the L-DAS network simulator,” says Joung. “Many of these parameters have a large dynamic range, from a few quadrillionths of a watt to tens of watts, which can cause precision issues with the computer simulation.”

At first glance, the original ‘naive’ L-DAS setup seemed to have a greater energy consumption than the L-MIMO system with co-located antennas. However, the team identified four key attributes that could dramatically enhance the L-DAS energy efficiency: proper antenna selection, clustering of antennas, pre-coding to improve channel quality, and computerized power control. With these improvements, the L-DAS network outperformed both L-MIMO and DAS technologies.

The group is now looking to the future. “Heterogeneous network (HetNet) architectures that can seamlessly support different 2G, 3G, 4G or WLAN networks are strong candidates for future communication networks,” says Joung. “Because L-DAS architecture can be applied to many HetNet applications, this work can help ensure a gentle and smooth replacement of real-life networks with HetNet.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Reference:
[1] Joung, J., Chia, Y. K. & Sun, S. Energy-efficient, large-scale distributed-antenna system (L-DAS) for multiple users. IEEE Journal of Selected Topics in Signal Processing 8, 954–965 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>