Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Learning to be precise


Mathematical model that learns to compensate for positioning errors can control a micromanipulation system more accurately

A mathematical model can improve the accuracy and repeatability of a positioning system by learning to anticipate tiny errors in its movements, show A*STAR researchers.

A capacitance gauge (top left) measures the accuracy of a micromanipulator system (bottom right), which is controlled by an enhanced analytic forward model. © 2014 A*STAR Institute for Infocomm Research

Yan Wu from the A*STAR Institute of Infocomm Research in Singapore. © 2014 A*STAR Institute for Infocomm Research

Micromanipulation systems are used to control objects’ positions with exquisite precision and play a vital role in applications such as telescopes and laser communication. Most rely on feedback sensors to reach the desired position, but these sensors introduce a time lag that can reduce the accuracy in applications requiring rapid responses. Although analytic forward models (AFMs) can be used to predict when positioning errors might occur and compensate for them in advance, they must be extremely accurate and uniquely tailored to a particular micromanipulation system.

Now, Yan Wu of the A*STAR Institute for Infocomm Research in Singapore, in collaboration with colleagues from the Harbin Institute of Technology in China, has developed a system that combines both approaches. The team created a machine learning algorithm that can improve the accuracy of its analytic control model based on sensor feedback [1].

Their enhanced analytic forward model (EAFM) combines a simple AFM with a ‘heteroscedastic Gaussian process (HGP) algorithm, which compensates for any residual difference between the AFM’s output and the desired position.

The team built a tip–tilt micromanipulation system that uses four piezoelectric drivers to change the position of its platform. These drivers can move the platform up to 32 micrometers, and position it with an accuracy of 10 nanometers. A capacitance gauge located next to the platform can measure its position to within one nanometer (see image).

The researchers trained the HGP algorithm by running 125 random control signals through their micromanipulation system. It learned to make probabilistic predications that could compensate for errors in the AFM’s output.

The team then tested the system with 30 different control signals, which were intended to move the platform by up to 28 micrometers. In every case, the EAFM system achieved smaller positioning errors than the AFM alone. And in trials of continuous movement, where the platform had to hit a series of four different points over a brief time, the EAFM outperformed the AFM in all but one of ten tests.

“All the experiments demonstrated that the AFM has errors with a very large variance (between 1 and 8 micrometers), whereas the EAFM keeps the errors at around 1 micrometer or less,” says Wu. “We are now putting this micromanipulator platform into a laser communication system, while investigating methods to further reduce the steady-state errors.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

[1] Su, Y., Dong, W., Wu, Y., Du, Z. & Demiris, Y. Increasing the accuracy and the repeatability of position control for micromanipulations using heteroscedastic Gaussian processes. 2014 IEEE International Conference on Robotics and Automation (ICRA), 4692–4698 (2014).

Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>