Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to be precise

26.01.2015

Mathematical model that learns to compensate for positioning errors can control a micromanipulation system more accurately

A mathematical model can improve the accuracy and repeatability of a positioning system by learning to anticipate tiny errors in its movements, show A*STAR researchers.


A capacitance gauge (top left) measures the accuracy of a micromanipulator system (bottom right), which is controlled by an enhanced analytic forward model. © 2014 A*STAR Institute for Infocomm Research


Yan Wu from the A*STAR Institute of Infocomm Research in Singapore. © 2014 A*STAR Institute for Infocomm Research

Micromanipulation systems are used to control objects’ positions with exquisite precision and play a vital role in applications such as telescopes and laser communication. Most rely on feedback sensors to reach the desired position, but these sensors introduce a time lag that can reduce the accuracy in applications requiring rapid responses. Although analytic forward models (AFMs) can be used to predict when positioning errors might occur and compensate for them in advance, they must be extremely accurate and uniquely tailored to a particular micromanipulation system.

Now, Yan Wu of the A*STAR Institute for Infocomm Research in Singapore, in collaboration with colleagues from the Harbin Institute of Technology in China, has developed a system that combines both approaches. The team created a machine learning algorithm that can improve the accuracy of its analytic control model based on sensor feedback [1].

Their enhanced analytic forward model (EAFM) combines a simple AFM with a ‘heteroscedastic Gaussian process (HGP) algorithm, which compensates for any residual difference between the AFM’s output and the desired position.

The team built a tip–tilt micromanipulation system that uses four piezoelectric drivers to change the position of its platform. These drivers can move the platform up to 32 micrometers, and position it with an accuracy of 10 nanometers. A capacitance gauge located next to the platform can measure its position to within one nanometer (see image).

The researchers trained the HGP algorithm by running 125 random control signals through their micromanipulation system. It learned to make probabilistic predications that could compensate for errors in the AFM’s output.

The team then tested the system with 30 different control signals, which were intended to move the platform by up to 28 micrometers. In every case, the EAFM system achieved smaller positioning errors than the AFM alone. And in trials of continuous movement, where the platform had to hit a series of four different points over a brief time, the EAFM outperformed the AFM in all but one of ten tests.

“All the experiments demonstrated that the AFM has errors with a very large variance (between 1 and 8 micrometers), whereas the EAFM keeps the errors at around 1 micrometer or less,” says Wu. “We are now putting this micromanipulator platform into a laser communication system, while investigating methods to further reduce the steady-state errors.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Reference:
[1] Su, Y., Dong, W., Wu, Y., Du, Z. & Demiris, Y. Increasing the accuracy and the repeatability of position control for micromanipulations using heteroscedastic Gaussian processes. 2014 IEEE International Conference on Robotics and Automation (ICRA), 4692–4698 (2014).

Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>