Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligence replaces copper – Siemens and Netze BW make power grid ready for the future

12.05.2014

Siemens Smart Grid and distribution network operator Netze BW have started a joint project entitled "Distributed Grid Intelligence."

The project's goal is to equip the power distribution grid in the Niederstetten region of Baden-Württemberg for the challenges of Germany's transition to a new energy mix by implementing a distributed intelligence system. At the same time, supply security is to be maintained at the present high level.

The aim is to allow the existing distribution grid to operate with maximum autonomy by equipping it with as much intelligence as possible and using as few additional medium-voltage cables as necessary. The solution will be based on proven Siemens energy automation technology, which is to be used in a new configuration. The results obtained and the experience gained during the course of this project will be taken into account in future Netze BW projects.

The northern supply region of the Niederstetten substation comprises two circuits with a total of 84 secondary substations and long circuit sections with overhead lines. About 45 percent of the cabling is buried underground. There are already numerous renewable energy sources in the region feeding power into the grid, and this trend is growing.

This in turn is causing ever high voltages in the dead-end feeders. This means that on occasions the power grid in the Niederstetten region comes up against the limit of its loading capacity. Instead of reacting to this through regular expansion of the distribution grid, Netze BW relies on intelligent systems and is using this general framework for implementing the new project. The goal is to make the distribution grid in Niederstetten ready for the future by the end of 2014 through the use of distributed network intelligence while making optimal use of the existing network infrastructure.

"We won't be able to transition to a new energy mix in Germany without intelligent power supply grids. The technology for this has long existed – and Siemens has the most comprehensive product portfolio industry-wide. In Niederstetten, we will demonstrate how existing distribution grids can be made ready for the future with proven products from our Smart Grid modular system," said Jan Mrosik, CEO of Siemens Smart Grid Division.

Martin Konermann, Technical Director at Netze BW GmbH, added: "With our distributed grid intelligence, we're helping promote the development of a clever and predictive power grid infrastructure in Germany. Our aim is not only to actively help shape the new energy policy. What we're doing is making it possible to implement this policy locally at communal and municipal level in the first place."

The core element of the modernization project is a distributed grid area controller in the Niederstetten substation, based on a Siemens Sicam energy automation system. This is responsible for voltage control and fault management and provides the communications connection. By acting as a link between the central SCADA system and the intelligent field devices, it also enables the controller to restore affected grid sections in case of a fault without human intervention.

In the "Distributed Grid Intelligence" project, the main emphasis is on network monitoring and fault management with intelligent measuring technology and long-range control for active voltage stability. For this purpose, nine secondary substations located at the most important nodal points are to be equipped with energy automation technology, and five substations equipped with voltage measurement systems in the dead-end feeders. The measured data can be transferred by remote transmission.

During the course of the project, a grid study on the fault management system will be conducted with a detailed reliability calculation for the Niederstetten grid, before and after network automation. Two medium-voltage in-phase regulators including power quality measurement on the primary and secondary side are to be installed for long-range voltage control. Over the entire project run time, the voltage controllers will receive their tap changes from the grid area controller on the basis of the distributed voltage measurement in the medium-voltage grid.

The Siemens Smart Grid Division (Nuremberg, Germany) offers power providers, network operators, industrial enterprises and cities an end-to-end portfolio with products and solutions to develop intelligent energy networks. Smart Grids enable a bidirectional flow of energy and information. They are required for the integration of more renewable energy sources in the network. In addition, power providers can run their plants more efficiently with data gained from Smart Grids. Software solutions that analyze data from Smart Grids will continuously gain importance. Thereby, the division uses in-house developments in addition to systems from software partners. For further information please see: http://www.siemens.com/smartgrid

Netze BW GmbH (Stuttgart, Germany) is the largest electricity, gas and water network operator in Baden-Württemberg and is a wholly owned subsidiary of EnBW Energie Baden-Württemberg AG. With a total workforce of 3283 employees, Netze BW operates the high-, medium- and low-voltage power grids of EnBW and provides and markets network-related and communal services for local authorities and public utilities in the electricity, gas, water, heat and telecommunications sectors. Further information at http://www.netze-bw.de

Reference Number: ICSG201405048e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Ms. Angela Broetel
Media Relations

Netze BW

Tel: +49 (711) 289-52141

Dietrich Biester | Siemens Division Smart Grid

Further reports about: Division Grid Grids Intelligence Smart copper measurement secondary voltage

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>