Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligence replaces copper – Siemens and Netze BW make power grid ready for the future

12.05.2014

Siemens Smart Grid and distribution network operator Netze BW have started a joint project entitled "Distributed Grid Intelligence."

The project's goal is to equip the power distribution grid in the Niederstetten region of Baden-Württemberg for the challenges of Germany's transition to a new energy mix by implementing a distributed intelligence system. At the same time, supply security is to be maintained at the present high level.

The aim is to allow the existing distribution grid to operate with maximum autonomy by equipping it with as much intelligence as possible and using as few additional medium-voltage cables as necessary. The solution will be based on proven Siemens energy automation technology, which is to be used in a new configuration. The results obtained and the experience gained during the course of this project will be taken into account in future Netze BW projects.

The northern supply region of the Niederstetten substation comprises two circuits with a total of 84 secondary substations and long circuit sections with overhead lines. About 45 percent of the cabling is buried underground. There are already numerous renewable energy sources in the region feeding power into the grid, and this trend is growing.

This in turn is causing ever high voltages in the dead-end feeders. This means that on occasions the power grid in the Niederstetten region comes up against the limit of its loading capacity. Instead of reacting to this through regular expansion of the distribution grid, Netze BW relies on intelligent systems and is using this general framework for implementing the new project. The goal is to make the distribution grid in Niederstetten ready for the future by the end of 2014 through the use of distributed network intelligence while making optimal use of the existing network infrastructure.

"We won't be able to transition to a new energy mix in Germany without intelligent power supply grids. The technology for this has long existed – and Siemens has the most comprehensive product portfolio industry-wide. In Niederstetten, we will demonstrate how existing distribution grids can be made ready for the future with proven products from our Smart Grid modular system," said Jan Mrosik, CEO of Siemens Smart Grid Division.

Martin Konermann, Technical Director at Netze BW GmbH, added: "With our distributed grid intelligence, we're helping promote the development of a clever and predictive power grid infrastructure in Germany. Our aim is not only to actively help shape the new energy policy. What we're doing is making it possible to implement this policy locally at communal and municipal level in the first place."

The core element of the modernization project is a distributed grid area controller in the Niederstetten substation, based on a Siemens Sicam energy automation system. This is responsible for voltage control and fault management and provides the communications connection. By acting as a link between the central SCADA system and the intelligent field devices, it also enables the controller to restore affected grid sections in case of a fault without human intervention.

In the "Distributed Grid Intelligence" project, the main emphasis is on network monitoring and fault management with intelligent measuring technology and long-range control for active voltage stability. For this purpose, nine secondary substations located at the most important nodal points are to be equipped with energy automation technology, and five substations equipped with voltage measurement systems in the dead-end feeders. The measured data can be transferred by remote transmission.

During the course of the project, a grid study on the fault management system will be conducted with a detailed reliability calculation for the Niederstetten grid, before and after network automation. Two medium-voltage in-phase regulators including power quality measurement on the primary and secondary side are to be installed for long-range voltage control. Over the entire project run time, the voltage controllers will receive their tap changes from the grid area controller on the basis of the distributed voltage measurement in the medium-voltage grid.

The Siemens Smart Grid Division (Nuremberg, Germany) offers power providers, network operators, industrial enterprises and cities an end-to-end portfolio with products and solutions to develop intelligent energy networks. Smart Grids enable a bidirectional flow of energy and information. They are required for the integration of more renewable energy sources in the network. In addition, power providers can run their plants more efficiently with data gained from Smart Grids. Software solutions that analyze data from Smart Grids will continuously gain importance. Thereby, the division uses in-house developments in addition to systems from software partners. For further information please see: http://www.siemens.com/smartgrid

Netze BW GmbH (Stuttgart, Germany) is the largest electricity, gas and water network operator in Baden-Württemberg and is a wholly owned subsidiary of EnBW Energie Baden-Württemberg AG. With a total workforce of 3283 employees, Netze BW operates the high-, medium- and low-voltage power grids of EnBW and provides and markets network-related and communal services for local authorities and public utilities in the electricity, gas, water, heat and telecommunications sectors. Further information at http://www.netze-bw.de

Reference Number: ICSG201405048e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Ms. Angela Broetel
Media Relations

Netze BW

Tel: +49 (711) 289-52141

Dietrich Biester | Siemens Division Smart Grid

Further reports about: Division Grid Grids Intelligence Smart copper measurement secondary voltage

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>