Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative, Lower Cost Sensors and Controls Yield Better Energy Efficiency

03.03.2015

Regulating comfort in small commercial buildings could become more efficient and less expensive thanks to an innovative low-cost wireless sensor technology being developed by researchers at the Department of Energy’s Oak Ridge National Laboratory.

Buildings are responsible for about 40 percent of the energy consumed in the United States. Studies indicate that advanced sensors and controls have the potential to reduce the energy consumption of buildings by 20-30 percent.


ORNL

ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors. ORNL’s Pooran Joshi shows how the process enables electronics components to be printed on flexible plastic substrates.

“It is widely accepted that energy-consuming systems such as heating, ventilating, and air conditioning (HVAC) units in buildings are under, or poorly, controlled causing them to waste energy,” said Patrick Hughes, director of ORNL’s Building Technologies Program. “Buildings could increase their energy efficiency if control systems had access to additional information.”

Collecting data such as outside air and room temperature, humidity, light level, occupancy and pollutants is currently cost prohibitive, whether the information is gathered by inexpensive conventional sensors that must be wired, or by using today’s expensive $150-300 per node wireless sensors.

ORNL’s new wireless sensor prototype could reduce costs to $1-10 per node by leveraging advanced manufacturing techniques such as additive roll-to-roll manufacturing. This process enables electronics components like circuits, sensors, antennae, and photovoltaic cells and batteries to be printed on flexible plastic substrates (base materials). The nodes can be installed without wires using a peel-and-stick adhesive backing.

“If commercially available at the target price point, there would be endless application possibilities where the installed cost to improve the control of energy-consuming systems would pay for itself through lower utility bills in only a few years,” Hughes said.

The ultra-low power smart sensors collect and send data to a receiver, which can capture data from many different peel-and-stick nodes and provide the information to the energy-consuming system. The more information received, the better the building’s energy management.

Both new construction and retrofitted buildings can benefit from ORNL’s smart sensors.

“This technology provides the information that enables ongoing continuous commissioning, fault detection and diagnosis, and service organization notifications when needed, ensuring optimal building system operations throughout their service life,” said ORNL’s Teja Kuruganti, principal investigator on the low-cost wireless sensors project.

ORNL is currently in negotiations to establish a cooperative research and development agreement with a premier international electronics manufacturer to make the low-cost wireless sensors commercially available.

This project is sponsored by DOE’s Building Technologies Office in DOE’s Office of Energy Efficiency and Renewable Energy.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/ 

Sara Shoemaker, shoemakerms@ornl.gov

Sara Shoemaker | newswise

More articles from Power and Electrical Engineering:

nachricht Silicon as a new storage material for the batteries of the future
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>