Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative LED high power light source with up to six wavelengths

28.04.2015

With the new „LedHUB“ LED light engine, laser- and LED specialist Omicron provides more flexibility in the world of Microscopy and Biotechnology.

Omicron‘s innovative „LedHUB LED Light Engine“ represents a new form of LED light source for science and research.

The high-performance system can be equipped with one to six LED modules of different wavelengths from UV to the near IR range and offers fast analogue intensity modulation with up to 200KHz and digital modulation with a switching time of <2µs for each channel. The individual LED modules can easily be exchanged and added by the user. Hence the system can be adapted to changing application requirements and is future-proof.

With a direct and active temperature control of the LED chips it is now possible to keep the power level and the emission spectra of the LED chips stable. This feature guarantees reliable and repeatable results in the customer‘s applications.

The light of the various high power LEDs is combined in the "LedHUB" with special optics and can be coupled efficiently into quartz glass fibre or liquid light guides.

LEDs with up to 5.000 milliwatt of optical output power and wavelengths between 365 and 850nm can be used in the "LedHUB" systems. Through directly accessible filter holders, that can be equipped with 25mm standard filters, the emission of each single LED may additionally be adapted to the application.

The modulation is possible via external modulation signals as well as by an internal programmable signal generator. A SYNC in- and output ensures the synchronization of / from external devices like cameras, microscopes or DAC cards.

The device can be conveniently controlled via the integrated RS-232 and USB-2.0 interface, the included software „Omicron Control Center“ or third party software. Typical applications include microscopy, flourescence analysis and the use as multispectral light source in forensics.

The new "LedHUB LED light engines" are offered with a manufacturer's warranty of three years and are now available.

Further information on Omicron laser products can be found at

www.omicron-laser.de

About Omicron
Since 1989, Omicron has been developing, building and producing innovative laser systems. With a highly qualified team Omicron specialized in customized solutions for applications in the fields of medicine, research, biotechnology, such as microscopy and flow cytometry, digital imaging and optical data storage as well as quality assurance and measurement engineering. Product development and production comply with European and US guidelines. A broad band of laser sources in the range of UV VIS/IR is available to satisfy individual customer requirements. Omicron offers single light sources as well as complete system solutions. Omicron pursues the objective of being an industry leader in product development and has not only set trends in laser technology but also has drawn worldwide attention with its developments.

Omicron - Laserage Laserprodukte GmbH
Raiffeisenstr. 5e
63110 Rodgau
Germany
Tel: +49-(0)6106-8224-0
Fax: +49-(0)6106-8224-10

email: mail@omicron-laser.de

web: www.omicron-laser.de

Ingrid Reuter | Omicron

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>