Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher efficiency through soft switching

03.02.2016

Efficiency and electro-magnetic compatibility - e.g. when feeding power into the mains supply - are major issues in the field of renewable energies . The power gained from photovoltaics or wind should be fed into the mains supply with the greatest efficiency possible and without any impact of electromagnetic interference on the environment.

Professor Manfred W. Gekeler will present his S3L and SS3L inverters and comparative measurement results (EMC, efficiency) at the EMV Conference, Europe's leading exhibition for electromagnetic compatibility.


Schematic circuit diagram of the soft-switching three level inverters (S3L and SS3L)

Both figures: Prof. Manfred W. Gekeler, Konstanz University of Applied Sciences


EMC and efficiency comparison of H3L, S3L and SS3L inverters.

Efficiency and electro-magnetic compatibility - e.g. when feeding power into the mains supply - are major issues in the field of renewable energies . The power gained from photovoltaics or wind should be fed into the mains supply with the greatest efficiency possible and without any impact of electromagnetic interference on the environment.

Inverters are used to convert DC voltage into AC voltage and are deployed in electric drives, for feeding power of renewable sources (solar or wind) into the mains supply, for uninterruptible power supply or as active dynamic filter. Lately, the use of highly-promising 3-level pulse inverters have become increasingly popular. Today's conventional design inverters are of the hard-switching type. This type, however, produces switching losses which result in reduced efficiency.

At the Konstanz University of Applied Sciences Prof. Dr.-Ing. Manfred W. Gekeler developed the S3L inverter which compensates for the disadvantages of the conventional hard-switching inverter. With this inverter, Prof. Gekeler has solved the problem of loss of energy in a simple way, namely by adding a snubber circuit. This circuit consists of merely a few simple, passive components and connects the topology of the multi-level inverter with the soft-switching technology.

The "Soft-Switching Three Level (S3L) Inverter" distinguishes itself through its particularly high efficiency and favorable EMC behavior, even when used with standard Si power semiconductors (IGBT, IGCT, GTO). Now Prof. Gekeler has additionally developed a new variant of the switching, the SS3L inverter topology.

In extensive tests carried out at the Konstanz University of Applied Sciences (HTWG), a 3-level inverter was reconfigured into the three variants H3L (conventional, hard-switching T-type version) S3L and SS3L and operated using different control methods and switching frequencies. Their interference voltages and efficiency were measured.

The comparative measurements clearly confirmed the advantages of the two new inverter topologies – S3Land SS3L: In terms of efficiency, the two soft-switching inverter designs S3L and SS3L are significantly superior compared to the H3L inverter. Regarding EMC, the S3L inverter demonstrated clear advantages over the H3L inverter and the SS3L inverter even more so. Particularly when it came to using a specific operating type with a variable switching frequency, the SS3L inverter proved to be the best choice.

Professor Manfred W. Gekeler will present the inverters and test results at the EMV Conference. The scientist, who teaches and does research at the Konstanz University of Applied Sciences, will present his S3L and SS3L inverters and comparative measurement results (EMC, efficiency) at Europe's leading exhibition for electromagnetic compatibility. The conference takes place in Duesseldorf from February 23-25, 2016. Prof. Gekeler will give a presentation on "power electronics“ on Wednesday, February 24, 2016 at 8:30 a.m. (session 2b).

Patent applications for the invention have already been granted in major industrialized nations (DE, JP, KR, CN, USA, CA, EP).
Licensing of this new technology is once again available for photovoltaics, engine control, uninterruptible power supply and wind power.
The Konstanz University of Applied Sciences has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the marketing of its innovation and the global economic implementation of this cutting-edge technology.

For further information - including on licensing - please contact the TLB Innovation Manager Dipl.-Ing. Emmerich Somlo (somlo@tlb.de).

Weitere Informationen:

http://www.technologie-lizenz-buero.com/en/news/press-releases.html
http://www.htwg-konstanz.de/Welcome-at-Hochschule-Konstanz.en

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>