Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heating and cooling with waste heat from industry

08.07.2015

Heating and cooling in the future will utilise energy gained from waste heat which will be distributed at low temperature using district heating and cooling networks. It will thus make use of the heat wasted by cooling systems in supermarkets and fruit storage facilities which up to now has simply been released untapped into the atmosphere.

South Tyrol’s EURAC Institute for Renewable Energy is exploring this new technology in the “FLEXYNETS” project which is financed to the tune of two million euros by the European research programme “Horizon 2020”. Yesterday, on the 7th July, the project partners finally met at EURAC to set things in motion.


At present district heating grids run via high temperatures of around 90 °C. To heat individual buildings, the networks have to connect to sizeable thermal plants, such as block thermal plants or waste incinerating plants. The technology which will now be researched by the South Tyrol EURAC Institute for Renewable Energy on the other hand runs at temperatures between 10 and 20°C.

This means that the district heating grids can be supplied with energy from sources running at much lower temperatures than previously. “We are working on developing district heating and cooling systems for tomorrow. We do not want to replace existing systems, but rather are seeking to integrate them into new concepts.

Space heating, generated for example from a waste incinerating plant, is intended to be supplemented by heat generated in various everyday processes and which is currently wasted,” explained Roberto Fedrizzi, scientist at the EURAC Institute for Renewable Energy and Director of the FLEXYNETS project. “By using low temperatures when distributing heat, we reduce the present huge heat loss in the underground distribution pipelines, which will make the whole grid much more efficient in the future,” said Fedrizzi.

According to the experts, the energy consumption for heating and hot water could be reduced by 80%, and for cooling buildings by 40%. Across Europe, this would amount to a reduction of 5 million tonnes of CO2 emissions by 2030.

The first phase of the three-year project will concentrate on developing the technology. There will then follow a test phase which is due to begin in summer 2016.

“For this first phase we will set up a laboratory in the Technology Park in Bozen-Bolzano simulating a small-scale district heating and cooling network. This will enable us to simulate and test different control strategies as well as operating scenarios,” added Roberto Fedrizzi.

The project’s third phase is dedicated to devising incentive measures for exploiting waste heat and strategies for integrating this new technology into already existing municipal systems. For this purpose, two working groups will be set up which will include district heating experts as well as representatives of the municipalities such as energy managers.

The FLEXYNETS Project will be managed by EURAC. Project partners from the whole of Europe attended the initial meeting in Bozen-Bolzano on July 7th and 8th: the University of Stuttgart, along with agencies and companies specialising in district heating systems from Italy, Spain, Germany and Denmark.

Weitere Informationen:

http://www.eurac.edu/en/research/technologies/renewableenergy/Pages/default.aspx - EURAC Institute for Renewable Energy

Laura Defranceschi | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>