Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass-on-glass lamination for large-area OLEDs right from the roll

09.05.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be presenting flexible organic light-emitting diodes (OLEDs) at AIMCAL 2016 in Dresden, Germany, from May 30th to June 2nd, 2016. These OLEDs have been fabricated on ultra-thin glass and encapsulated with a ultra-thin glass foil in the same process.

Organic light-emitting diodes have already found acceptance as a light source in first luminaires on the market on rigid glass. However, far larger shares of the market could be acquired, if flexible large-area OLEDs could be manufactured cost-effectively with consistent quality.


Glass-on-glass laminated OLED made using the Fraunhofer FEP roll-to-roll OLED process line

© Fraunhofer FEP

Scientists are working feverishly on this worldwide. Large-area OLEDs could be employed not only in innovative furniture designs, but also deliver good service in other sectors requiring specialized curved design, such as architectural lighting and automotive, for example.

The organic layers of the OLED are sensitive to oxygen and moisture and needs to be well protected. Flexible ultra-thin glass meets the stringent requirements of a hermetic barrier, free of defects and pinhole freedom for large OLED emissive surfaces.

Fraunhofer FEP has had success not only in applying OLEDs to flexible ultra-thin glass, but also in encapsulating the devices using an additional thin glass layer in a single roll-to-roll manufacturing step. A high-performance adhesive was applied over the entire surface of the encapsulating glass in advance in collaboration with tesa SE.

This adhesive glass film is subsequently laminated to the OLED-coated ultra-thin glass. Fraunhofer FEP will be presenting this type of OLED at AIMCAL 2016, in this case based on G-Leaf™ ultra-thin glass by Nippon Electric Glass Co Ltd. (NEG). A 10 cm × 25 cm emissive surfaces will be on display.

“But encapsulation is not the only challenge for flexible large area OLEDs that need to remain stable over long periods. In order to get them to emit, a highly conductive, transparent oxide layer with good light coupling properties is required and reliable electrical contacts to the emitting layers with low contact resistance is essential," explains Dr. Stefan Mogck, Head of Roll-to-Roll Organic Technology at Fraunhofer FEP. “We are proud of having optimized our process, and that these layers can be applied very homogenously to the flexible glass.”

Making dependable electrical connections to the ultra-thin glass without damaging it was especially challenging. The scientists will be working with customers in the future on non-destructive techniques of integration.

Fraunhofer FEP offers its industrial partners process and product development over the complete value chain customized to their requirements. Processes for treatment and coating flexible glass for customer-specific emissive surfaces in different sizes and colors can be developed, and even flexible OLED prototypes fabricated at customers’ requests. In addition, the Institute can develop matching driver circuitry for supplying power to the prototypes.

Fraunhofer FEP at AIMCAL 2016
Talks
Monday, May 30
Session: Coating and Laminating Short Course
13:30 – 17:00, Location: Bellevue I
Oliver Miesbauer, Fraunhofer IVV / Dr. rer. nat. John Fahlteich, Fraunhofer FEP

Tuesday, May 31
Track: Web Coating and Web Handling,
Session: Web Surface / Barrier
14:30 – 15:00, Location: Bellevue I
Surface modification of polyethylene terephthalate (PET) and oxide coated PET for adhesion improvement
Juliane Fichtner, Fraunhofer FEP

Track: Vacuum
Session: Sputtering, Coating Equipment, Inline control
16:00 – 16:30, Location: Bellevue II
Adapted particle bombardment during layer growth by pulse magnetron sputtering
Dr. rer. nat. Daniel Glöß, Fraunhofer FEP

Wednesday, June 1
Track: Vacuum
Session: Pretreatment, Substrate Film, Simulation
10:30 – 11:00, Location: Bellevue II
Vacuum plasma treatment and coating of fluoropolymer webs – challenges and applications
M.Eng. Cindy Steiner, Fraunhofer FEP

Thursday, June 2
Track: Vacuum
Session: New Applications, Emerging Technologies, Capacitors, Photovoltaic
8:30 – 9:00, Location: Bellevue II
New vacuum coating technologies for metal strips and foils
Prof. Dr. rer. nat. Christoph Metzner, Fraunhofer FEP

10:30 – 11:00, Location: Bellevue II
Present status of Roll-to-Roll Fabrication for OLED lighting
Michael Stanel, Fraunhofer FEP

Labtour
Fraunhofer FEP
June 1, 2016
Fraunhofer FEP invites you to an exciting tour to our labs: applied R&D for the industry at its best. During the tour, we will present pilot scale experimental coating equipment, e.g. MAXI (in-line vacuum coating for metal strips and sheets), coFlex® 600 (roll-to-roll pilot sputter roll coater), novoFlex® 600 (roll-to-roll pilot coater), atmoFlex (non-vacuum roll to roll coating and electron beam surface treatment) and a roll-to-roll process line for the deposition of OLED.

Press contact:
Annett Arnold
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/jzJ

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Further reports about: Elektronik Fraunhofer-Institut OLED PET Plasmatechnik coating

More articles from Power and Electrical Engineering:

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>