Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting blade bearings in shape for the turbines of the future

18.02.2016

In the HAPT research project (short for Highly Accelerated Pitch Bearing Test) researchers from the Fraunhofer Institute for Wind Energy and Energy System Technology IWES and the Institute of Machine Elements, Engineering Design and Tribology (IMKT) at Leibniz University of Hanover work together with the IMO group to establish the foundations for the further development of blade bearings. It is also aimed that the project results will allow the use of individual pitch control systems for load reduction – a primary goal of the manufacturers. The German Federal Ministry for Economic Affairs and Energy (BMWi) provided funding for the project to the tune of € 10.7 million.

In wind turbines in the 7-10 MW range, the wind drives blades of up to 80 m in length. Blade bearings, the interface between the hub and the blades, are the design bottleneck in the development of systems of this size. Due to the sheer dimensions of the blades, the systems are subject to effects which can be already detected in turbines with smaller dimensions but are not all that significant.


The blade bearings test bench makes it possible to pack 20 years of service into just six months.

Fraunhofer IWES

As the load increases, faults in the blade bearings also increase exponentially and the rate of damage rises. At the same time, almost no information is available on how and why these faults develop. As a result, experience-based design of blade bearings, standard practice among manufacturers, is now reaching its limits.

One possibility for reducing the loads to which the structure of the wind turbines is subject is individual pitch control (IPC), which balances out the loads across the individual blades and reduces them overall. However, as there is still no reliable information available concerning the suitability of blade bearings for the use of IPC and because the latter further increases the demands placed on the blade bearings, the industry sector remains somewhat hesitant to introduce this seminal technology.

The researchers involved in the HAPT project want to resolve these uncertainties by developing a test bench for blade bearings and a method for calculating their service life. Accelerated testing procedures should make it possible to simulate 20 years of operation in a testing period of just six months.

“According to our strategy we contribute method expertise of testing wind turbine components,” comments deputy director Prof. Dr. Jan Wenske the IWES’ share. The aim is to provide the industry with the necessary prerequisites for the computational design of blade bearings – dimensioning will become more precise, the use of IPC will be made reliably possible and levelized cost of electricity will be cut at the same time.

IMO Head of Engineering Hubertus Frank is confident: “The new testing opportunities of HAPT will establish a new basis for the development of future blade bearings. We will provide blade bearings and a wealth of practical know-how for the tests.” Prof. Dr.-Ing. Gerhard Poll of the Leibniz Universität Hannover sees beneficial effects:

“I expect this project to bring together the competencies of Fraunhofer IWES, Leibniz Universität Hannover - and thereby ForWind - in an exemplary way. Along with IMO Group the wind turbine technology will make a big step forward.” The results of the project will be incorporated in the future standardisation of blade bearings.

Kontakt:

Fraunhofer Institute for Wind Energy and Energy System Technology IWES
Babette Dunker
Head of Internal and External Communication
Am Seedeich 45
27572 Bremerhaven
Tel. +49 (0)471-14290-228 babette.dunker@iwes.fraunhofer.de

Project Partners:

The Fraunhofer Society is the leading organisation for applied research in Europe. The group is composed of 67 institutes and research facilities working at locations all over Germany. 24,000 employees achieve an annual research volume of more than € 2.1 billion, of which more than € 1.8 million are in the field of contract research. The Fraunhofer Society generates more than 70 per cent of this segment through industry assignments and publicly financed research projects. International cooperations with leading research partners and innovative companies all around the world ensure direct access to the key current and future scientific communities and markets.

In 1831, founded by the scholar Karl Karmarsch, the “Higher Trade School of Hannover” started with only 64 students. Today there are more than 25,000 students in the natural sciences and engineering, the humanities and social sciences as well as in law and economics. In the future, too, studying, teaching and research are to be enjoyable, and therefore one of the declared goals of Leibniz Universität Hannover is to continually improve the quality of teaching and research. Leibniz Universität Hannover has a large scientific potential. This is proved by numerous research activities. Leibniz Universität Hannover concentrates on nationally and internationally competitive key areas in order to sharpen its profile in this way. The research is strengthened by cooperation with internationally leading universities and research centres.

The IMO Group was founded 1988 and has more than 25 years experience in designing, manufacturing and supplying slewing rings and self-contained slew drives. Currently more than 500 employees work for IMO worldwide. IMO ball and roller slewing rings are being designed, manufactured and sold in diameters 100 mm up to more than 6000 mm in a wide variety. Applications include for instance industrial and plant building, cranes, construction machinery, mining and medical technology. In renewable energies IMO is a leading supplier of blade, yaw and main bearings for on- and offshore wind turbines, and provides blade bearings for tidal stream systems. IMO Slew drives are used in manlift platforms, tunneling, steering equipment such as gantry cranes and heavy-duty transporters, cranes or many more.

Weitere Informationen:

http://www.windenergie.iwes.fraunhofer.de

Babette Dunker | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>