Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting blade bearings in shape for the turbines of the future

18.02.2016

In the HAPT research project (short for Highly Accelerated Pitch Bearing Test) researchers from the Fraunhofer Institute for Wind Energy and Energy System Technology IWES and the Institute of Machine Elements, Engineering Design and Tribology (IMKT) at Leibniz University of Hanover work together with the IMO group to establish the foundations for the further development of blade bearings. It is also aimed that the project results will allow the use of individual pitch control systems for load reduction – a primary goal of the manufacturers. The German Federal Ministry for Economic Affairs and Energy (BMWi) provided funding for the project to the tune of € 10.7 million.

In wind turbines in the 7-10 MW range, the wind drives blades of up to 80 m in length. Blade bearings, the interface between the hub and the blades, are the design bottleneck in the development of systems of this size. Due to the sheer dimensions of the blades, the systems are subject to effects which can be already detected in turbines with smaller dimensions but are not all that significant.


The blade bearings test bench makes it possible to pack 20 years of service into just six months.

Fraunhofer IWES

As the load increases, faults in the blade bearings also increase exponentially and the rate of damage rises. At the same time, almost no information is available on how and why these faults develop. As a result, experience-based design of blade bearings, standard practice among manufacturers, is now reaching its limits.

One possibility for reducing the loads to which the structure of the wind turbines is subject is individual pitch control (IPC), which balances out the loads across the individual blades and reduces them overall. However, as there is still no reliable information available concerning the suitability of blade bearings for the use of IPC and because the latter further increases the demands placed on the blade bearings, the industry sector remains somewhat hesitant to introduce this seminal technology.

The researchers involved in the HAPT project want to resolve these uncertainties by developing a test bench for blade bearings and a method for calculating their service life. Accelerated testing procedures should make it possible to simulate 20 years of operation in a testing period of just six months.

“According to our strategy we contribute method expertise of testing wind turbine components,” comments deputy director Prof. Dr. Jan Wenske the IWES’ share. The aim is to provide the industry with the necessary prerequisites for the computational design of blade bearings – dimensioning will become more precise, the use of IPC will be made reliably possible and levelized cost of electricity will be cut at the same time.

IMO Head of Engineering Hubertus Frank is confident: “The new testing opportunities of HAPT will establish a new basis for the development of future blade bearings. We will provide blade bearings and a wealth of practical know-how for the tests.” Prof. Dr.-Ing. Gerhard Poll of the Leibniz Universität Hannover sees beneficial effects:

“I expect this project to bring together the competencies of Fraunhofer IWES, Leibniz Universität Hannover - and thereby ForWind - in an exemplary way. Along with IMO Group the wind turbine technology will make a big step forward.” The results of the project will be incorporated in the future standardisation of blade bearings.

Kontakt:

Fraunhofer Institute for Wind Energy and Energy System Technology IWES
Babette Dunker
Head of Internal and External Communication
Am Seedeich 45
27572 Bremerhaven
Tel. +49 (0)471-14290-228 babette.dunker@iwes.fraunhofer.de

Project Partners:

The Fraunhofer Society is the leading organisation for applied research in Europe. The group is composed of 67 institutes and research facilities working at locations all over Germany. 24,000 employees achieve an annual research volume of more than € 2.1 billion, of which more than € 1.8 million are in the field of contract research. The Fraunhofer Society generates more than 70 per cent of this segment through industry assignments and publicly financed research projects. International cooperations with leading research partners and innovative companies all around the world ensure direct access to the key current and future scientific communities and markets.

In 1831, founded by the scholar Karl Karmarsch, the “Higher Trade School of Hannover” started with only 64 students. Today there are more than 25,000 students in the natural sciences and engineering, the humanities and social sciences as well as in law and economics. In the future, too, studying, teaching and research are to be enjoyable, and therefore one of the declared goals of Leibniz Universität Hannover is to continually improve the quality of teaching and research. Leibniz Universität Hannover has a large scientific potential. This is proved by numerous research activities. Leibniz Universität Hannover concentrates on nationally and internationally competitive key areas in order to sharpen its profile in this way. The research is strengthened by cooperation with internationally leading universities and research centres.

The IMO Group was founded 1988 and has more than 25 years experience in designing, manufacturing and supplying slewing rings and self-contained slew drives. Currently more than 500 employees work for IMO worldwide. IMO ball and roller slewing rings are being designed, manufactured and sold in diameters 100 mm up to more than 6000 mm in a wide variety. Applications include for instance industrial and plant building, cranes, construction machinery, mining and medical technology. In renewable energies IMO is a leading supplier of blade, yaw and main bearings for on- and offshore wind turbines, and provides blade bearings for tidal stream systems. IMO Slew drives are used in manlift platforms, tunneling, steering equipment such as gantry cranes and heavy-duty transporters, cranes or many more.

Weitere Informationen:

http://www.windenergie.iwes.fraunhofer.de

Babette Dunker | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

More articles from Power and Electrical Engineering:

nachricht Harvesting the Sun for Power and Produce
24.11.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>