Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to the point with electric cars

26.11.2015

New process for accurate positioning to the nearest centimeter with inductive charging systems

Electric vehicles are increasingly no longer charged with electricity by cords but by means of inductive charging systems. Charging takes place via a magnetic field which is generated by a charging coil in the parking ground and transmitted to a receiver coil on the underbody of the car according to the transformer principle.


3D display of the position of the charging coil (receiver coil red, charging coil blue)

University of Stuttgart / IVK


Electric vehicle above the charging coil

University of Stuttgart / IVK

In order for this to work, the driver must park the car in a way that both coils are exactly on top of each other. Without an adequate assistance system this is virtually impossible - but precisely this kind of system has been lacking until recently.

At the Institute for Internal Combustion Engines and Automotive Engineering (IVK) at Stuttgart University a method has now been developed that accomplishes positioning accurate to the nearest centimeter.

The advantage of inductive charging systems is that in the car no charging cord must be carried, and in addition they are more secure against vandalism. However, in spite of several years of research and various technological approaches the search for a positioning method which enables precise localization of the charging coil and thus assists the driver in aligning the vehicle has not brought any satisfactory solutions so far. Either the procedures were inaccurate, immature and expensive, or very susceptible to weather conditions.

Within the scope of his doctoral thesis at IVK headed by Prof. Hans-Christian Reuss, Dean Martinovic has now developed and patented a new method based on magnetic fields with which a vehicle can be placed so precisely that the position of the two coils differs by less than one centimeter.

In the project "BIPoLplus“ that is funded by the Federal Ministry of Education and Research (BMBF) as well as supported by the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) within the framework of the leading-edge cluster "Electromobility South-West", he uses a pulsed magnetic field of low frequency for the first time instead of the usual sinusoidal magnetic field.

This way, interfering interactions with the metallic underbody of the electric vehicle can be avoided. Special highly sensitive magnetic field sensors attached directly to the metal underbody of the electric vehicle scan the magnetic pulse signal and send the information to a control unit in the vehicle.

A specifically developed algorithm then calculates automatically - without any communication with the signal-emitting electronics on the parking site - the position of the charging coil. Finally, this position is being displayed to the driver using a 3D application on a tablet in the cockpit supporting the driver in the precise alignment of the vehicle.

Thereby, the driver can trace his/her motion in real time. The current prototype uses two magnetic field sensors which indicate the position reliably as soon as the two coils approach each other to a distance of 1.5 meters. Compared to other physical quantities the magnetic field disposes of significant advantages: for example it is not subject to attenuation during the penetration of materials and as opposed to electromagnetic waves (WLAN, RFID, etc.) it is not reflected.

Since there is no line of sight required between the sensor and signal source, it is - unlike optical systems - independent of weather conditions such as snow or fog. Therefore, the approach is suitable both for use in the garage at home as well as outdoors. The method works for each vehicle and moreover it is cost-effective because, unlike other solutions, only two very small, space-saving and low-cost magnetic field sensors are used. Whether the cars are being parked forwards or backwards and whether they stand side by side or one behind the other during refueling, it does not matter: all parking models are being supported by this method.

In the future the system will become even better: more projects at IVK aim at increasing the positioning range and at optimizing the signal processing.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>