Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to the point with electric cars

26.11.2015

New process for accurate positioning to the nearest centimeter with inductive charging systems

Electric vehicles are increasingly no longer charged with electricity by cords but by means of inductive charging systems. Charging takes place via a magnetic field which is generated by a charging coil in the parking ground and transmitted to a receiver coil on the underbody of the car according to the transformer principle.


3D display of the position of the charging coil (receiver coil red, charging coil blue)

University of Stuttgart / IVK


Electric vehicle above the charging coil

University of Stuttgart / IVK

In order for this to work, the driver must park the car in a way that both coils are exactly on top of each other. Without an adequate assistance system this is virtually impossible - but precisely this kind of system has been lacking until recently.

At the Institute for Internal Combustion Engines and Automotive Engineering (IVK) at Stuttgart University a method has now been developed that accomplishes positioning accurate to the nearest centimeter.

The advantage of inductive charging systems is that in the car no charging cord must be carried, and in addition they are more secure against vandalism. However, in spite of several years of research and various technological approaches the search for a positioning method which enables precise localization of the charging coil and thus assists the driver in aligning the vehicle has not brought any satisfactory solutions so far. Either the procedures were inaccurate, immature and expensive, or very susceptible to weather conditions.

Within the scope of his doctoral thesis at IVK headed by Prof. Hans-Christian Reuss, Dean Martinovic has now developed and patented a new method based on magnetic fields with which a vehicle can be placed so precisely that the position of the two coils differs by less than one centimeter.

In the project "BIPoLplus“ that is funded by the Federal Ministry of Education and Research (BMBF) as well as supported by the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) within the framework of the leading-edge cluster "Electromobility South-West", he uses a pulsed magnetic field of low frequency for the first time instead of the usual sinusoidal magnetic field.

This way, interfering interactions with the metallic underbody of the electric vehicle can be avoided. Special highly sensitive magnetic field sensors attached directly to the metal underbody of the electric vehicle scan the magnetic pulse signal and send the information to a control unit in the vehicle.

A specifically developed algorithm then calculates automatically - without any communication with the signal-emitting electronics on the parking site - the position of the charging coil. Finally, this position is being displayed to the driver using a 3D application on a tablet in the cockpit supporting the driver in the precise alignment of the vehicle.

Thereby, the driver can trace his/her motion in real time. The current prototype uses two magnetic field sensors which indicate the position reliably as soon as the two coils approach each other to a distance of 1.5 meters. Compared to other physical quantities the magnetic field disposes of significant advantages: for example it is not subject to attenuation during the penetration of materials and as opposed to electromagnetic waves (WLAN, RFID, etc.) it is not reflected.

Since there is no line of sight required between the sensor and signal source, it is - unlike optical systems - independent of weather conditions such as snow or fog. Therefore, the approach is suitable both for use in the garage at home as well as outdoors. The method works for each vehicle and moreover it is cost-effective because, unlike other solutions, only two very small, space-saving and low-cost magnetic field sensors are used. Whether the cars are being parked forwards or backwards and whether they stand side by side or one behind the other during refueling, it does not matter: all parking models are being supported by this method.

In the future the system will become even better: more projects at IVK aim at increasing the positioning range and at optimizing the signal processing.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>