Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Germanium comes home to Purdue for semiconductor milestone

10.12.2014

A laboratory at Purdue University provided a critical part of the world's first transistor in 1947 – the purified germanium semiconductor – and now researchers here are on the forefront of a new germanium milestone.

The team has created the first modern germanium circuit – a complementary metal–oxide–semiconductor (CMOS) device – using germanium as the semiconductor instead of silicon.


This graphic depicts a new electronic device created at Purdue that uses germanium as the semiconductor instead of silicon. Germanium is one material being considered to replace silicon in future chips because it could enable the industry to make smaller transistors and more compact integrated circuits. (Purdue University image)

"Bell Labs created the first transistor, but the semiconductor crystal made of purified germanium was provided by Purdue physicists," said Peide "Peter" Ye, a Purdue professor of electrical and computer engineering.

Germanium was superseded by silicon as the semiconductor of choice for commercial CMOS technology. However, the industry will soon reach the limit as to how small silicon transistors can be made, threatening future advances. Germanium is one material being considered to replace silicon because it could enable the industry to make smaller transistors and more compact integrated circuits, Ye said.

Compared to silicon, germanium also is said to have a "higher mobility" for electrons and electron "holes," a trait that makes for ultra-fast circuits.

In new findings, Purdue researchers show how to use germanium to produce two types of transistors needed for CMOS electronic devices. The material had previously been limited to "P-type" transistors. The findings show how to use the material also to make "N-type" transistors. Because both types of transistors are needed for CMOS circuits, the findings point to possible applications for germanium in computers and electronics, he said.

Findings will be detailed in two papers being presented during the 2014 IEEE International Electron Devices Meeting on Dec. 15-17 in San Francisco. One paper was authored by Ye and graduate students Heng Wu, Nathan Conrad and Wei Luo, the same authors of the second paper together with graduate students Mengwei Si, Jingyun Zhang and Hong Zhou.

The material has properties that make it difficult to create an N-type contact with low electrical resistance for good current flow. However, the germanium is doped, or impregnated with impurities that alter its properties. The areas containing the most impurities have the lowest resistance. The researchers showed how to etch away the top layer of germanium, exposing the most heavily doped portion, which provides a good contact.

The etching creates recessed channels, which serve as gates needed for CMOS transistors to switch on and off. Findings show the fundamental part of the circuit, called the inverter, is the best-performing non-silicon inverter demonstrated so far, Ye said.

The research, based at the Birck Nanotechnology Center in Purdue's Discovery Park, are funded in part by the Semiconductor Research Corp.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Peide Ye, 765-494-7611, yep@purdue.edu

Note to Journalists: Electronic copies of the research papers are available from Emil Venere, Purdue News Service, at 765-494-4709, venere@purdue.edu

ABSTRACT

First Experimental Demonstration of Ge CMOS Circuits

Heng Wu, Nathan Conrad, Wei Luo, and Peide D. Ye*

School of Electrical and Computer Engineering, Purdue University

*Tel: 1-765-494-7611, Fax: 1-765-496-6443, Email: yep@purdue.edu

We report the first experimental demonstration of Ge CMOS circuits, based on a novel recessed channel and S/D technique. Aggressively scaled non-Si CMOS logic devices with channel lengths (Lch) from 500 to 20 nm, channel thicknesses (Tch) of 25 and 15 nm, EOTs of 4.5 and 3 nm and a small width ratio (Wn:Wp=1.2) are realized on a Ge-on-insulator (GeOI) substrate. The CMOS inverters have high voltage gain of up to 36 V/V, which is the best value among all of the non-Si CMOS results by the standard top-down approach. Scalability studies on Ge CMOS inverters down to 20 nm are carried out for the first time. NAND and NOR logic gates are also investigated.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q4/germanium-comes-home-to-purdue-for-semiconductor-milestone.html

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>