Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fully integrated! New battery concepts for electric vehicles – more compact, less expensive and more

26.01.2016

Development of a new Li-ion battery generation for the direct embedding into the chassis of electric vehicles – joint project “EMBATT” of thyssenkrupp System Engineering GmbH, IAV GmbH and Fraunhofer IKTS starts

Driving enjoyment and electric drive – two terms that are no longer contradictory. Today, hardly any automobile manufacturer goes without an “e-car“ in its range of models. However, further full-scale research in the advancement of energy storage materials and concepts as well as the constant improvement of corresponding production technologies has to be conducted until electric vehicles become established in everyday life.

On that point, Bernd Becker, chairman of the management board of thyssenkrupp System Engineering, says: “Production research contributes crucially to transferring intelligent battery concepts from the idea to the industrialization”. Furthermore, optimal cost, performance and lifespan shall be achieved by means of intelligent system architectures and future-oriented lightweight housings.

The three project partners thyssenkrupp System Engineering GmbH, IAV GmbH and Fraunhofer IKTS take this a vital step further. With EMBATT, they develop the concept and specially tailored production technologies for lithium-based high-performance batteries set-up in a planar manner, which are directly integrated into the chassis of the vehicle.

“Thereby, significantly more compact energy storage solutions with energy densities of 450 Wh/l and therefore ranges of up to 1000 km are realizable“, explains Wolfgang Reimann, division director “E-Traktion” of the IAV GmbH. However, technological challenges have to be dealt with in advance. This becomes possible by pooling the specific experiences and competencies of the three partners in a joint project.

IAV as one of the leading engineering partners of the automotive industry contributes its development expertise to the EMBATT project, from vehicle conception, vehicle safety, battery design and construction to the application of the control unit software. Fraunhofer IKTS conducts research on the development of customized materials and specific methods for electrode manufacturing. thyssenkrupp System Engineering has expertise in manufacturing production plants and production equipment for vehicle construction and battery manufacturing.

thyssenkrupp System Engineering and Fraunhofer IKTS jointly operate a pilot plant located in Pleissa, Saxony, where laser-based processing methods and joining processes for the efficient, generative production of lithium batteries are investigated alongside environmentally friendly processes for the manufacturing of battery electrodes. „Due to the promising connection of materials and technology know-how of the cooperation partners, system costs of Li-ion batteries are expected to be reduced to 200 €/kWh”, says Dr. Mareike Wolter, group manager “Mobile Energy Storage Systems” at Fraunhofer IKTS.

On the occasion of the Dresden Battery Days 2015“, the EMBATT project was presented to a professional audience for the first time. The development project will run three years and is supported by ERDF funds and the Free State of Saxony. The goal of this venture encompasses application-oriented production research up to successful industrialization in order to establish electric vehicles as part of everyday life in the future.

Weitere Informationen:

http://www.ikts.fraunhofer.de/en/pressandmedia/pressemitteilungen/embatt.html

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Further reports about: Fraunhofer-Institut IKTS battery electric vehicles energy storage

More articles from Power and Electrical Engineering:

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>