Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fully integrated! New battery concepts for electric vehicles – more compact, less expensive and more

26.01.2016

Development of a new Li-ion battery generation for the direct embedding into the chassis of electric vehicles – joint project “EMBATT” of thyssenkrupp System Engineering GmbH, IAV GmbH and Fraunhofer IKTS starts

Driving enjoyment and electric drive – two terms that are no longer contradictory. Today, hardly any automobile manufacturer goes without an “e-car“ in its range of models. However, further full-scale research in the advancement of energy storage materials and concepts as well as the constant improvement of corresponding production technologies has to be conducted until electric vehicles become established in everyday life.

On that point, Bernd Becker, chairman of the management board of thyssenkrupp System Engineering, says: “Production research contributes crucially to transferring intelligent battery concepts from the idea to the industrialization”. Furthermore, optimal cost, performance and lifespan shall be achieved by means of intelligent system architectures and future-oriented lightweight housings.

The three project partners thyssenkrupp System Engineering GmbH, IAV GmbH and Fraunhofer IKTS take this a vital step further. With EMBATT, they develop the concept and specially tailored production technologies for lithium-based high-performance batteries set-up in a planar manner, which are directly integrated into the chassis of the vehicle.

“Thereby, significantly more compact energy storage solutions with energy densities of 450 Wh/l and therefore ranges of up to 1000 km are realizable“, explains Wolfgang Reimann, division director “E-Traktion” of the IAV GmbH. However, technological challenges have to be dealt with in advance. This becomes possible by pooling the specific experiences and competencies of the three partners in a joint project.

IAV as one of the leading engineering partners of the automotive industry contributes its development expertise to the EMBATT project, from vehicle conception, vehicle safety, battery design and construction to the application of the control unit software. Fraunhofer IKTS conducts research on the development of customized materials and specific methods for electrode manufacturing. thyssenkrupp System Engineering has expertise in manufacturing production plants and production equipment for vehicle construction and battery manufacturing.

thyssenkrupp System Engineering and Fraunhofer IKTS jointly operate a pilot plant located in Pleissa, Saxony, where laser-based processing methods and joining processes for the efficient, generative production of lithium batteries are investigated alongside environmentally friendly processes for the manufacturing of battery electrodes. „Due to the promising connection of materials and technology know-how of the cooperation partners, system costs of Li-ion batteries are expected to be reduced to 200 €/kWh”, says Dr. Mareike Wolter, group manager “Mobile Energy Storage Systems” at Fraunhofer IKTS.

On the occasion of the Dresden Battery Days 2015“, the EMBATT project was presented to a professional audience for the first time. The development project will run three years and is supported by ERDF funds and the Free State of Saxony. The goal of this venture encompasses application-oriented production research up to successful industrialization in order to establish electric vehicles as part of everyday life in the future.

Weitere Informationen:

http://www.ikts.fraunhofer.de/en/pressandmedia/pressemitteilungen/embatt.html

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Further reports about: Fraunhofer-Institut IKTS battery electric vehicles energy storage

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>