Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From power grids to heartbeat: Using mathematics to restore rhythm

15.07.2015

When a rhythm stalls, the effect can be fatal – in a power grid it can mean a blackout, and in the human heart even death.

An international team of scientists has now developed a new approach for revoking these undesired quenching states. They use an advanced mathematical methodology, building on complex networks analysis, and demonstrate it in experiments with chemical reactions.

This could one day help to stabilize the flow of electricity in power grids challenged by the variable input from renewable energy sources. Future research could apply it to other complex networks, including processes within body cells and even the human cardiovascular system.

“Many systems rely on tiny movements back and forth, in a certain rhythm, like in music – we call this oscillation,” says Jürgen Kurths of the Potsdam Institute for Climate Impact Research (PIK) in Germany, head of the research team. “Now if the rhythm gets disturbed, the system cannot continue working properly. Hence the interest in finding ways to restore the rhythm.” The findings will publish in the eminent journal Nature Communications.

Fluctuating renewable energy generation enhances power grid stress

Power grid stability was the point of departure for the scientists. The alternating current transmitted in power lines swings at a certain frequency, for instance 50 Hertz in Europe and 60 in the US. This regular behaviour can get disturbed when the power input changes from one moment to another – this can happen, for instance, with electricity generated by windmills when a storm or a calm period occurs, while coal-fired power plants produce a steady flow of energy. Yet more and more renewable energy is being fed into power grids, since burning fossil fuels emits greenhouse gases which are the main cause of dangerous climate change.

To avoid power grid stress, and eventually blackouts, new approaches to stabilize current frequency are much desired. The method the scientists now found is just one of a number of approaches, many of them already under discussion. Yet it is an unprecedentedly innovative one. “The principle is fairly simple, but the mathematics behind it are not”, says István Kiss of Saint Louis University in the USA.

“We demonstrated that the theory applies to an experiment in which the rhythmicity can be restored in a small network of current generating chemical reactions. These reactions involve an ensemble of complex physical and chemical processes with many variables and uncertainties, so it is really surprising how well the purely mathematically derived approach proves to work here. This indicates a remarkable generality.”

Two organ-pipes of similar pitch can mutually suppress their vibration

The scientists studied the interaction of coupled oscillating systems. Already in the 19th century it was observed that two organ-pipes of similar pitch standing side by side can mutually suppress their vibration. Related phenomena are known from neuroscience, chemical reactions, and electronic circuits. Up to now, no solution for restoring the rhythm had been found.

The team of researchers involved comprises experts from China, India, Russia, the US, UK, Macedonia, and Germany. Several of the international scientists have been working on the study during their stay as guest scientists at PIK, so this is where they developed a good part of the analysis.

“We show that subtly delaying the impulse which goes from one element of the system to another, for instance in a power grid, can efficiently restore the previously disrupted oscillations,” says Wei Zou of Huazhong University of Science and Technology in China, lead author of the study. “Even a feeble deviation can make a huge difference here – I have to admit we have been surprised how simple and robust our method is. Now we hope it will open a door for future research in the field of complex systems science, and invoke eventually applications in many areas ranging from biology via engineering to social sciences.”

Article: Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J. (2015): Restoration of rhythmicity in diffusively coupled dynamical networks. Nature Communications [doi: NCOMMS8709]

Weblink, once the article is published: http://www.nature.com/naturecommunications

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>