Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From power grids to heartbeat: Using mathematics to restore rhythm


When a rhythm stalls, the effect can be fatal – in a power grid it can mean a blackout, and in the human heart even death.

An international team of scientists has now developed a new approach for revoking these undesired quenching states. They use an advanced mathematical methodology, building on complex networks analysis, and demonstrate it in experiments with chemical reactions.

This could one day help to stabilize the flow of electricity in power grids challenged by the variable input from renewable energy sources. Future research could apply it to other complex networks, including processes within body cells and even the human cardiovascular system.

“Many systems rely on tiny movements back and forth, in a certain rhythm, like in music – we call this oscillation,” says Jürgen Kurths of the Potsdam Institute for Climate Impact Research (PIK) in Germany, head of the research team. “Now if the rhythm gets disturbed, the system cannot continue working properly. Hence the interest in finding ways to restore the rhythm.” The findings will publish in the eminent journal Nature Communications.

Fluctuating renewable energy generation enhances power grid stress

Power grid stability was the point of departure for the scientists. The alternating current transmitted in power lines swings at a certain frequency, for instance 50 Hertz in Europe and 60 in the US. This regular behaviour can get disturbed when the power input changes from one moment to another – this can happen, for instance, with electricity generated by windmills when a storm or a calm period occurs, while coal-fired power plants produce a steady flow of energy. Yet more and more renewable energy is being fed into power grids, since burning fossil fuels emits greenhouse gases which are the main cause of dangerous climate change.

To avoid power grid stress, and eventually blackouts, new approaches to stabilize current frequency are much desired. The method the scientists now found is just one of a number of approaches, many of them already under discussion. Yet it is an unprecedentedly innovative one. “The principle is fairly simple, but the mathematics behind it are not”, says István Kiss of Saint Louis University in the USA.

“We demonstrated that the theory applies to an experiment in which the rhythmicity can be restored in a small network of current generating chemical reactions. These reactions involve an ensemble of complex physical and chemical processes with many variables and uncertainties, so it is really surprising how well the purely mathematically derived approach proves to work here. This indicates a remarkable generality.”

Two organ-pipes of similar pitch can mutually suppress their vibration

The scientists studied the interaction of coupled oscillating systems. Already in the 19th century it was observed that two organ-pipes of similar pitch standing side by side can mutually suppress their vibration. Related phenomena are known from neuroscience, chemical reactions, and electronic circuits. Up to now, no solution for restoring the rhythm had been found.

The team of researchers involved comprises experts from China, India, Russia, the US, UK, Macedonia, and Germany. Several of the international scientists have been working on the study during their stay as guest scientists at PIK, so this is where they developed a good part of the analysis.

“We show that subtly delaying the impulse which goes from one element of the system to another, for instance in a power grid, can efficiently restore the previously disrupted oscillations,” says Wei Zou of Huazhong University of Science and Technology in China, lead author of the study. “Even a feeble deviation can make a huge difference here – I have to admit we have been surprised how simple and robust our method is. Now we hope it will open a door for future research in the field of complex systems science, and invoke eventually applications in many areas ranging from biology via engineering to social sciences.”

Article: Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J. (2015): Restoration of rhythmicity in diffusively coupled dynamical networks. Nature Communications [doi: NCOMMS8709]

Weblink, once the article is published:

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>