Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017

Research and industry worldwide are working to further reduce the costs of solar electricity and German research is playing a leading role. With its newest solar cell, the Fraunhofer Institute for Solar Energy Systems ISE has now exceeded its own world record for multicrystalline solar cells. The record cell converts 22.3 percent of the incident sunlight into electricity.

Multicrystalline silicon, the work horse of the photovoltaic industry, dominates the PV module production worldwide with a market share of 57 percent. In the last few years, the efficiencies of the more expensive monocrystalline solar cells have increased greatly, thus widening the gap between mono and multicrystalline material.


Photo of the world record multicrystalline silicon solar cell with 22.3 percent efficiency.

Fraunhofer ISE


Plasma texture for multicrystalline silicon.

Fraunhofer ISE

At Fraunhofer ISE in Freiburg, the researchers have succeeded in decreasing this efficiency gap by surpassing their own world record efficiency for multicrystalline solar cells which they established just a few months ago. Pushing beyond the magical threshold of 22 percent, their newest solar cell converts 22.3 percent of the incident solar energy into electricity. The researchers affirm that the maximum potential of the material and the cell technology has not yet been realized.

The new record became possible through the use of highly pure silicon supplied by the project partner Wacker and also through adjustments that targeted the needs of the multicrystalline material in both the crystallization and the cell processing steps.

An optimized plasma texture and a so-called “Tunnel Oxide Passivated Contact Technology (TOPCon),” developed at Fraunhofer ISE for back side contacting played an essential role. With the TOPCon technology the electrical contacts are applied over the entire rear surface of the cell without patterning. This reduces charge-carrier losses and leads to much higher electrical efficiencies.

“We are pleased to have succeeded in achieving such an excellent result,” remarks Martin Hermle, Department Head of Advanced Development of High-Efficiency Silicon Solar Cells at Fraunhofer ISE. Hermle adds: “The key to our success was the holistic approach which enabled us to optimize all steps, from the crystallization up to the individual solar cell fabrication processes. The close and continual cooperation between the characterization, crystallization and the solar cell technology research teams at ISE allowed us to reduce the loss mechanisms step by step and successfully develop an optimized process chain.”

Division Director Prof. Stefan Glunz adds: “These successful results achieved in solar cell efficiency are based on steady, continuous development and demonstrate the strength of European research and innovation in this field. At the same time these advances lead the way for Europe’s entry into market production of the next generation technology on the global scale.”

This record was a achieved within the project “multiTOP“ which runs until March 2017 and is financed by the German Federal Ministry for Economic Affairs and Energy BMWi.

The new world record solar cell will be presented at the European Photovoltaic Solar Energy Conference (EUPVSEC) on September 28, 2017 in Amsterdam by Dr. Jan Benick in his talk “Approaching 22% Efficiency with Multicrystalline n-Type Silicon Solar Cells.”

Weitere Informationen:

https://www.ise.fraunhofer.de/en/press-media/press-releases/2017/fraunhofer-ise-...

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>