Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Develops SmartCalc.CTM

14.12.2016

Research and industry invest lots of know-how in improving solar cell efficiency. In order that PV modules benefit from the advances in cell efficiency, the cell-to-module integration process must be performed reliably with low losses. With this in mind, the photovoltaic module group at Fraunhofer ISE developed the software SmartCalc.CTM, which enables manufacturers of PV modules and materials to optimize the assembly and material combination in a PV module, before fabricating a prototype.

SmartCalc.CTM determines the cell-to-module effects, or “CTM”, which occur when solar cells are integrated into a module. Starting with the cell power, the software calculates the optical losses and gains (e. g. reflection), electrical losses (e. g. due to resistances) and the geometrical losses (inactive areas) in solar modules.


With SmartCalc.CTM, Fraunhofer ISE has developed a software that helps reduce the cell-to-module power losses in PV module manufacturing.

©Fraunhofer ISE

The software tool assists in analyzing potential yields, thus enabling PV manufacturers to determine how new materials or concepts would affect module efficiency. In the model, the interaction between components and process steps are optimized in such a way that the best possible module – with the highest power or the maximum efficiency under the given boundary conditions – is achieved.

“SmartCalc.CTM was conceived for module manufacturers and material suppliers,” explains Matthieu Ebert, team leader of “Module Efficiency and New Concepts” at Fraunhofer ISE. “Our software offers added value in that it can quickly analyze the interplay between the influencing factors for a module design and present these in a clear manner.”

The underlying models in SmartCalc.CTM provide detailed yet flexible control at the same time. Properties of solar cells, encapsulation material or module glass can be easily adapted. Thus, the use of new materials and components and their effect on the module efficiency can be easily determined, enabling new technologies and module designs to be evaluated rapidly.

The software can also be used to optimize costs. For example, different less-expensive materials can be compared and evaluated with respect to the module’s performance efficiency.

SmartCalc.CTM is based on a simulation model which has been published and is under development at Fraunhofer ISE since 2008. The model considers the many factors that influence module performance such as optical and electrical effects as well as singular components, for example, solar cells, glazings or the module frame. As a result, potential improvements can be indentified easily and applied in practice.

The CTM factors can change drastically depending on the choice of solar cell, module materials and the module assembly. “With a well-selected combination of materials and module design, an optimization of all factors can even lead to a CTM > 100%, indicating a higher output as compared to the sum of all solar cells before integration,” says Ebert.

SmartCalc.CTM has a user-friendly interface with an accompanying operating manual. As well as the software license, the team at Fraunhofer ISE offers consulting and R&D support for analyzing and optimizing the simulation results. The software shall be continually developed in order to keep pace with future module assemblies.

Weitere Informationen:

https://www.cell-to-module.com/
https://www.ise.fraunhofer.de/en?set_language=en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>