Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Achieves New World Record for Both Sides-Contacted Silicon Solar Cells

15.09.2015

25.1 Percent Efficiency with TOPCon Technology

The Fraunhofer Institute for Solar Energy Systems ISE has set a new efficiency record for silicon solar cells. For the first time, an efficiency of 25.1 percent has been measured for a both sides-contacted silicon solar cell. Having a simple rear side contact without any patterning, this type of solar cell converts one quarter of the incident sunlight into electricity. The new concept for the solar cell rear side holds great potential for further increases in efficiency.


Fraunhofer ISE achieves new world record for both sides-contacted silicon solar cell: TOPCon technology makes 25.1 percent efficiency possible.

© Fraunhofer ISE


TEM-image (Transmission Electron Microscope) showing TOPCon structure developed at Fraunhofer ISE for both sides-contacted silicon solar cells.

© Fraunhofer ISE

This record achieved by Fraunhofer ISE is the highest efficiency achieved to date for both sides-contacted silicon solar cells, characterized by having metal contacts on both the front and rear sides. This solar cell at 25.1 percent efficiency features a novel concept, namely a full-area passivated back contact.

“To improve the solar cell efficiency, the focus has been on increasingly complex solar cell structures up to now,” explains Dr. Martin Hermle, Head of the High Efficiency Solar Cells department at Fraunhofer ISE. “The biggest advantage of our new concept is that we can now contact the entire rear cell surface without patterning. Compared to the high-efficiency solar cell structures presently in use, we offer both a simplified manufacturing process and higher efficiencies at the same time,” says Hermle.

With the so-called TOPCon (Tunnel Oxide Passivated Contact) technology, developed by Fraunhofer ISE, metal contacts are applied to the rear side without patterning. To achieve this, the Fraunhofer researchers developed a selective passivated contact made of tunnel oxide that enables majority charge carriers to pass and prevents the minority carriers from recombining.

The thickness of the intermediate passivation layer is reduced to one or two nanometers, allowing the charge carriers to “tunnel” through it. Subsequently, a thin coating of highly doped silicon is deposited over the entire layer of ultra-thin tunnel oxide. This novel combination of layers allows electrical current to flow out of the cell with nearly zero loss.

In the photovoltaics industry, the majority of solar cells have an aluminum-alloyed back contact covering the entire rear side. This type of contact, however, limits the efficiency. Therefore, the industry currently retrofits their production to incorporate the PERC (Passivated Emitter Rear Cell) technology in order to increase the solar cell efficiency.

With PERC technology, only a small area on the rear side is contacted in order to reduce recombination. PERC, however, requires additional patterning steps and leads to longer current conduction paths in the silicon wafer. TOPCon, on the other hand, offers a possible approach to reduce these loss mechanisms and increase the efficiency.

“With TOPCon, we have developed a pioneering technology to increase the efficiency of silicon solar cells,” says Prof. Stefan Glunz, Division Director of Solar Cells – Development and Characterization. “At 25.1% efficiency, we are the first research institute to cross the 25 percent mark with an evolutionary further development for both sides-contacted solar cells and to close the gap on the world record efficiency for back contacted solar cells,” adds Glunz.

The team of Dr. Martin Hermle has been working on the TOPCon concept for about three years. The scientists in the team have succeeded in continually increasing the solar cell efficiency using this technology. With their latest result, they have surpassed the 25 percent mark. The research was funded within the project FORTES from the German Federal Ministry for Economic Affairs and Energy and U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, under Award Number DE-EE0006336.

EU PVSEC: Come hear our presentation on this topic!

On Tuesday, September 15, 2015, Prof. Stefan Glunz, Division Director of “Solar Cells – Development and Characterization” will hold a plenary talk on this topic at the European Photovoltaic Conference (EU PVSEC) in Hamburg. The title of the talk is “The Irresistible Charm of a Simple Current Flow Pattern – Approaching 25 % with a Solar Cell Featuring a Full-Area Back Contact” (Plenary Session 2BP.1 from 10:30-12:10 a.m.)

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>