Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fit for the Energy System of the Future

24.06.2015

European Project Team Presents Planning Tool for the Distribution Grid

Due to the rising penetration of photovoltaics, heat pumps and electric vehicles (EV) in the power distribution grid, the requirements for grid flexibility and stability are increasing. Just how existing power grids can be made fit for the future was the topic of a cooperative German, Danish and Dutch project in which the Fraunhofer Institute for Solar Energy Systems ISE was involved.


In the project »NEMO« Fraunhofer ISE together with partners developed a planning tool for grid operators to integrate renewable energies into the power distribution grid.

©Überlandwerk Groß-Gerau GmbH (ÜWG)


User-friendly interface of NEMO Show Case Designer.

©Fraunhofer ISE

Over a period of three years, the project partners from research and industry took well-proven techno-economic modelling and optimization tools and implemented them into the new NEMO tool suite.

This forward-looking tool prepares the distribution grid for the energy system of the future, by predicting the interaction between decentralized suppliers and consumers in realistic future scenarios.

After the test phase was successfully completed in all three countries, a workshop was held to present the capabilities and advantages of this new tool to distribution and transmission grid operators as well as associations, grid service providers and system operators.

The amount of energy fed into the grid from intermittent renewable energy sources is rising from year to year. At the same time, electrical consumptions such as heat pumps are increasingly being installed and the number of electric vehicles on the streets is also growing.

To date, the growth has been manageable. Between 2020 and 2050, however, the number of electric vehicles in Germany is expected to increase beyond one million, forcing the charging infrastructure to expand.

Since the present grid is not designed for the dynamic interplay between large amounts of decentralized suppliers and consumers, local grid congestion and voltage problems will arise if the grid does not adapt to the new situation. Additionally, the penetration of photovoltaics, heat pumps and electric vehicles in the power distribution grid varies appreciably depending on the region and the power grid.

A central issue addressed in the project “Novel E-Mobility Grid Model” was how to support grid operators, in particular, in the strategic analysis and future planning of their distribution grids.

How NEMO supports grid operators and service providers in grid planning

The project team has worked together for three years to develop the NEMO tool suite, a tool for planning power grids in which renewables are optimally integrated and controllable loads and storage are considered. To develop the software, extreme scenarios were taken into account.

The NEMO tool suite is based on existing technical and economic simulation models and was verified by case studies in real distribution grids, e. g. a grid with photovoltaics, wind farms, heat pumps, electric vehicles and co-generation plants (CHP) in the Danish municipality Ringkøbing.

“Through the cooperation in the consortium, we had access to existing products and expertise which we were able to synergize in order to develop new products for the market,” explains Dr. Bernhard Wille-Hausmann, head of the working group “Energy Management and Grids” at Fraunhofer ISE.

The Nemo Show Case Designer is the core module of the tool suite and directs the user through the different processes with a user-friendly format. First, the power grid data is read in, giving consideration to the varying data formats which exist.

In parallel, the allocation of production and consumption at precisely the grid connection point is carried out. Finally scenarios are defined and load flow analyses are performed. If a problem is detected in the electricity grid, different solutions are recommended and economically compared. Provided with the result, the user carries on with the implementation of the grid planning.

Collaboration with the project partners culminated in a final stakeholder workshop

Throughout the entire course of the project, the highest priority was given to the continuous exchange of information with the operators of the distribution and transmission grids, who showed committed support throughout the entire development of NEMO tool suite. With this direct link to the practice, the project team was able to consider the requirements of the grid operators.

The highlight of this exchange was a final stakeholder workshop in Mainz, Germany, at which NEMO tool suite and the results of the first test simulations were analyzed. The workshop participants presented the individual challenges they had experienced and the project team demonstrated how the solutions developed in the project could help to improve the planning and operation of the power grid. All participants agreed that the NEMO tool suite provides a quick and simple method for providing grid planning assistance, while considering intelligent grid components at the same time.

About NEMO:

The “Novel E-Mobility Grid Model (NEMO)” http://www.nemo-project.eu/ is a project within the framework of the ERA NET Plus Program electromobility+. Development partners were Fraunhofer ISE, EMD International A/S in Denmark and DNV GL in Holland. The project was supported by the Dutch Ministry of Economic Affairs, the German Federal Ministry for Economic Affairs and Energy (BMWi) through the project sponsor DLR, and the Danish Ministry of Higher Education and Science.

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>