Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering researchers use laser to 'weld' neurons

10.02.2016

Ph.D. student is first ever to connect neurons, in ground-breaking research

A research team based in the University of Alberta Faculty of Engineering has developed a method of connecting neurons, using ultrashort laser pulses--a breakthrough technique that opens the door to new medical research and treatment opportunities.


UAlberta electrical engineering Ph.D. student Nir Katchinskiy led a research project that was able to "weld" neurons together using a femtosecond laser.

Credit: UAlberta Engineering

The team is the first ever to find a way to bond neurons and in doing so, has given researchers a powerful new tool. Neurons are cells in the nervous system that are responsible for transferring information between the brain and the rest of the body.

"The immediate application is for researchers. They finally have a new tool to do what they have not been able to do before," said Nir Katchinskiy, a second-year PhD student in Electrical Engineering who led the study. "We're engineers. We come up with tools that provide potential."

The team's findings are published in the flagship scientific journal Nature Scientific Reports.

Katchinskiy had a real-life application in mind when he started the project.

"I was really interested in the nervous system--if you have a severed nerve, you can't repair it," he said. "My thought was, what if we could 'weld' it back up right after it's injured?"

To conduct the study, two neurons, put in a special solution that prevents them from sticking together, were brought into contact with each other. Femtosecond laser pulses--each ultrashort pulse occurring every 10-15 seconds--were delivered to the meeting point of the two cells. Although the outside layer of the cells was partially compromised, the inside of that protective layer remained intact. As a result, the two cells established solid bonds forming a common membrane at the targeted area.

Throughout multiple experiments, the cells remained viable and the connection strong. It took the neurons 15 milliseconds to stick to each other--the process would have taken hours to occur naturally.

The biggest advantage of the discovery is that it gives researchers complete control on the cell connection process. "You can really plan any experiment. The idea is to show that you can use it (femtosecond laser) as a research tool to control what you are attaching," said Katchinskiy.

"You may not be able to go in and treat the human spine with this, but it brings you closer," said electrical engineering professor Abdul Elezzabi, who is a co-author of the paper and Katchinskiy's research supervisor. "But it brings you closer to how these things work."

So far, the team has applied this method to three types of cells, but the potential of the technique seems limitless. For this project, Katchinskiy and Elezzabi, who are in the Department of Electrical and Computer Engineering, teamed up with professor Roseline Godbout from the U of A's Department of Oncology and Cross Cancer Institute and Dr. Helly Goez, a professor in the division of pediatric neurology in the Department of Pediatrics at the U of A Faculty of Medicine and Dentistry. Both are also co-authors of the paper.

"We have two of the biggest researchers on cancer working with us," said Elezzabi, a professor who is Katchinskiy's research supervisor. Elezzabi says femtosecond lasers can prove efficient in prostate, brain and ocular cancer research and treatment. Another possible application is in post cancer surgery treatment.

Media Contact

Richard Cairney
richard.cairney@ualberta.ca
780-492-4514

 @ualberta

http://www.ualberta.ca 

Richard Cairney | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>