Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity Billing Made Easy

25.01.2016

There are many players in today’s energy markets, including power plants of all sizes as well as network operators, consumers, and power suppliers. A new data hub from Siemens simplifies billing of complex power flows, thus making market access easier for all participants.

In an increasingly complex energy market, Siemens is improving the billing of a wide range of associated business processes. This simplifies the interplay of the electricity market’s many participants, which is necessary because today’s liberalized markets have become extremely complex.


The liberalized electricity market has become very complex due to countless energy producers and distributors. A software platform from Siemens makes the electricity billing easier

Not only can consumers freely choose their suppliers, countless small energy producers are feeding electricity into the lower grid level, which consists of the distribution network. Moreover, large amounts of energy are being transmitted across long distances to demand centers.

Because this electricity generally travels through the grid of an external operator, each use of a grid has to be billed separately. To enable these flows of electricity to be easily and correctly billed, Siemens has now developed Market Transaction Manager, a software application for EnergyIP, its smart grid data platform.

Because most electrical energy isn’t stored, but is almost always immediately consumed, grid operators have to continually forecast expected demand for specific network areas. Operators then supply the predicted amount of energy by purchasing electricity or planning in the electricity from available power plants.

However, if the amount of energy that is actually consumed differs from the quantity forecast, this disparity has to be billed later on. Network losses — which arise every time electricity is transmitted — also have to be correctly estimated.

A Proliferation of Suppliers and Operators

To date, such retroactive billing between individual power suppliers and grid operators has been governed by bilateral agreements. The more players a market has – Germany, for example, has more than 1,000 power suppliers and over 900 network operators – the more complex such retroactive billing becomes. Moreover, meter data isn’t available at all times for every transfer point so that retroactive corrections sometimes have to be made for periods that go back more than one year.

Now, thanks to EnergyIP – essentially a hub or platform for the comprehensive processing of meter data – demand and supply data will be collected, checked, and quickly transmitted to associated players. In addition to providing a uniform pool of basic data, the platform opens the door to the elimination of bilateral agreements between players. Small and new companies thus gain easier access to the market.

The introduction of smart meters, some of which can take readings every 15 minutes, generates huge amounts of data, whose processing would otherwise require every network operator to have its own solution. What’s more, new legislation can be more easily integrated into a centralized platform than in decentralized systems. EnergyIP is expected to play a role in this area.

When Customers Switch to Suppliers

Siemens has now developed Market Transaction Manager (MTM), an application that builds on this platform. This application serves as a data hub for consumers, small producers – “prosumers” – network operators, suppliers, large energy producers, and provides them with the information they need for their business processes.

Take, for example, customers who want to switch their power suppliers. Because this may happen much more often in the future than it does today, such changes will have to occur quickly. That’s where the new data hub can help.

If a participant reports that he will switch his supplier at a certain date, the system first checks whether the new supplier is approved, after which it determines the current meter reading and specifies the date of the switch for the meter that is assigned to the consumer in question. In addition, the system stores the associated history (i.e. which supplier was linked to which meter at a specific time) so that retroactive billing can still be correctly performed for the next few years.

Tracking Meter Readings

Market Transaction Manager can also bill the difference between actual and forecast demand. It adds up the meter readings of all of a supplier’s consumers on a daily basis. But because a specific grid area can contain anywhere from several thousand to millions of meters, there will never be a time when all of the readings are correct. As a result, the missing data has to be estimated on the basis of load profiles.

Once several days have elapsed, a grid area’s data situation will be stable enough to bill its consumption. The MTM then independently corrects all of the readings that are not yet available and regularly supplies this information to market players at the end of the month, for example, so that they can retroactively bill the amounts.

The MTM proceeds in a similar manner to determine network losses (the difference between the energy that is fed into and taken out of a grid). Missing readings are reliably corrected later on if meters only provide readings at long intervals, for example.

Applications in Gas and Water Markets

Additional business processes and players will enter the liberalized electricity market in the future. For example, the market will contain service providers who will purchase electricity on behalf of major consumers in order to optimize the latter’s energy costs. The installation of smart meters in private households will also create additional new business models.

These developments can be flexibly supported and promoted by a centralized data platform that interacts with a data hub that appropriately prepares all of the information for the respective business processes. Moreover, the solution is not restricted to electrical energy, as it can also be used for the gas and water markets, for example. Initial applications already exist. For example, Norway’s state-owned network operator will put the data platform elhub and its associated data hub into operation for business processes in 2017.

Source for the number of network operators and power suppliers in Germany
Norbert Aschenbrenner


Kontakt

Herr Dr Norbert Aschenbrenner

Redaktion

Siemens AG
norbert.aschenbrenner@siemens.com

 
Herr Florian Martini

Pressekontakt

Siemens AG

florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>