Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early Warning System for Dikes Passes Field Test


Sensors and intelligent systems for analyzing sensor data can detect damage to dikes at an early stage, and thus protect longer dike segments as well.

Technology developed by Siemens for this has now passed its field test, which was conducted on a chain of sensors spread out along a length of five kilometers of a dike in Amsterdam. The sensor system permanently records and transmits data on the dike's condition. Experts believe such automated dike monitoring can reduce maintenance costs by ten to maximally 20 percent.

Dike protection is becoming more important around the world as sea levels rise and the incidence of storms increases. More than two-thirds of all European cities are now examining ways to protect themselves from river and ocean flooding. According to the Munich Re reinsurance company, flooding accounted for nearly 40 percent of all damage caused by natural disasters worldwide in 2013.

Real time information available

Waternet Amsterdam is the pilot customer for the dike monitoring trials and the operator of the local drinking and wastewater network. The company is also responsible for more than 1,000 kilometers of dikes. These dikes protect 700 square kilometers of land on which more than one million people live. The dikes used to undergo main­tenance work every five to 30 years, depending on their material. Regardless if that was sand, clay, peat, or soil, the dikes' stability had to be measured at regular intervals. Experts inspected them every few years and sank measuring devices into the ground.

Today, information can be called up in real time on smartphones. In order to extend sensor battery life, reports on dike conditions are only sent once an hour, although if danger is detected reports will be sent in one-minute intervals. The data is collected by sensors that are inserted into the dike around every 100 meters. The sensors are located above and below the surface of the water, where they measure the temperature, pressure, and humidity within the dike, as well as the depth and temperature of the water in the canal. The results are then sent via GPRS to a control center, where the data is processed and compared with long-term historical measurements.

Warmer dike means water has seeped in

If, for example, an interior temperature of 14 degrees Celsius is measured within a dike, it could be an indication that the levee is about to break because warmer water has seeped in. That's because groundwater - and thus the inside of a dike - has a temperature of about eight degrees. The system compares the real-time data with the history. For example, it measures the height of the water table and then calls up data on the amount of precipitation that normally falls in the area at that time of year- and whether there was a recent drought that would allow the dike to take in more water or if the dike is already saturated. The material the dike is made of also plays a role because it makes it possible to determine how likely a landslide is.

The neural networks used can distinguish between typical and atypical deviations. They can often sound an alarm weeks or months before a problem occurs. If conditions along a number of sections are the same, the software system can even draw precise conclusions about those dike sections which are not equipped with sensors.

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>