Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Warning System for Dikes Passes Field Test

17.11.2014

Sensors and intelligent systems for analyzing sensor data can detect damage to dikes at an early stage, and thus protect longer dike segments as well.

Technology developed by Siemens for this has now passed its field test, which was conducted on a chain of sensors spread out along a length of five kilometers of a dike in Amsterdam. The sensor system permanently records and transmits data on the dike's condition. Experts believe such automated dike monitoring can reduce maintenance costs by ten to maximally 20 percent.

Dike protection is becoming more important around the world as sea levels rise and the incidence of storms increases. More than two-thirds of all European cities are now examining ways to protect themselves from river and ocean flooding. According to the Munich Re reinsurance company, flooding accounted for nearly 40 percent of all damage caused by natural disasters worldwide in 2013.

Real time information available

Waternet Amsterdam is the pilot customer for the dike monitoring trials and the operator of the local drinking and wastewater network. The company is also responsible for more than 1,000 kilometers of dikes. These dikes protect 700 square kilometers of land on which more than one million people live. The dikes used to undergo main­tenance work every five to 30 years, depending on their material. Regardless if that was sand, clay, peat, or soil, the dikes' stability had to be measured at regular intervals. Experts inspected them every few years and sank measuring devices into the ground.

Today, information can be called up in real time on smartphones. In order to extend sensor battery life, reports on dike conditions are only sent once an hour, although if danger is detected reports will be sent in one-minute intervals. The data is collected by sensors that are inserted into the dike around every 100 meters. The sensors are located above and below the surface of the water, where they measure the temperature, pressure, and humidity within the dike, as well as the depth and temperature of the water in the canal. The results are then sent via GPRS to a control center, where the data is processed and compared with long-term historical measurements.

Warmer dike means water has seeped in

If, for example, an interior temperature of 14 degrees Celsius is measured within a dike, it could be an indication that the levee is about to break because warmer water has seeped in. That's because groundwater - and thus the inside of a dike - has a temperature of about eight degrees. The system compares the real-time data with the history. For example, it measures the height of the water table and then calls up data on the amount of precipitation that normally falls in the area at that time of year- and whether there was a recent drought that would allow the dike to take in more water or if the dike is already saturated. The material the dike is made of also plays a role because it makes it possible to determine how likely a landslide is.

The neural networks used can distinguish between typical and atypical deviations. They can often sound an alarm weeks or months before a problem occurs. If conditions along a number of sections are the same, the software system can even draw precise conclusions about those dike sections which are not equipped with sensors.


Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>