Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did you know that infrared heat helps to keep the Christmas stollen mold-free?

25.11.2016

A delicious Christmas stollen for tea simply belongs to Christmas time. The rich pastry should not only taste well but also remain mold-free.

The use of infrared systems from Heraeus Noblelight prior to packaging significantly reduces the formation of mold. For Christmas stollen, 6 seconds at 125°C is enough to achieve a notable effect. Tests with baked bread showed that bread lasted three to four days longer when it was treated with medium-wave infrared emitters for only four seconds.


Infrared emitters reduce germs on bread

One of the major problems in large-scale bakeries is mold contamination of the bread surface between baking and packing. Mold spores are naturally present within a bakery environment and contamination can take place as the bread cools before it is wrapped.

Heraeus Noblelight have carried out successful tests, both in its own application center in Neston and in some bakeries, to demonstrate the effectiveness of infrared radiation as mold-prevention technology. It has been shown that mold contamination is prevented if the bread is heated for a few seconds before final packing.

The short heating time does not have any negative effects on the taste or the consistency of the bread. Heraeus now offers the bakeries the opportunity to use their testing facilities to convince themselves of the effectiveness of the technology.

Infrared heat is already widely used within the food sector, providing targeted and controllable heat to ready-made meals or chocolate products . In most cases, carbon infrared emitters are used because they heat the surfaces very quickly and maintain the desired temperature with a maximum deviation of 1°C.

Carbon infrared emitters for germ reduction on baking tools

Infrared heating transmits large amounts of energy in a short time. A disinfection with infrared radiation is a thermal disinfection, with the help of controlled heat. Depending on the power of the emitter, humidity and desired production line speed, sterilization is achieved between 120°C and 160°C within 10 to 30 seconds.

Carbon infrared emitters combine the highly effective medium wave radiation with sufficiently high surface powers. Thus, germs can also be killed on porous surfaces within less than one minute. Due to the depth effect of the carbon emitters the germs which already lie in several layers are also reached.

In the baking industry Carbon infrared systems provide simple, fast and safe disinfection of baking molds, conveyor belts and other baking utensils. By killing bacteria and spores, the fungus and mold formation is minimized. Carbon infrared emitters from Heraeus Noblelight are also particularly easy to handle.

They are a reaction time of 1-2 seconds so there is no risk of ovreheating the baked goods in the event of the unexpected stoppage of the conveyor system. They are also particularly compact, which simplifies retrofitting into an existing machine. The radiation field can be easily adapted to the width of the baking trays.

Read more about UV technology for the sterilization of surfaces and packaging material here.

Are you interested in more application examples?
Click here to order more case stories about the food industry!

Heraeus Noblelight GmbH
Heraeusstr. 12-14
D-63450 Hanau

Phone +49 6181 35 8539
Fax +49 6181 35 16 8539
E-Mail: hng-info@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>