Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did you know that infrared heat helps to keep the Christmas stollen mold-free?

25.11.2016

A delicious Christmas stollen for tea simply belongs to Christmas time. The rich pastry should not only taste well but also remain mold-free.

The use of infrared systems from Heraeus Noblelight prior to packaging significantly reduces the formation of mold. For Christmas stollen, 6 seconds at 125°C is enough to achieve a notable effect. Tests with baked bread showed that bread lasted three to four days longer when it was treated with medium-wave infrared emitters for only four seconds.


Infrared emitters reduce germs on bread

One of the major problems in large-scale bakeries is mold contamination of the bread surface between baking and packing. Mold spores are naturally present within a bakery environment and contamination can take place as the bread cools before it is wrapped.

Heraeus Noblelight have carried out successful tests, both in its own application center in Neston and in some bakeries, to demonstrate the effectiveness of infrared radiation as mold-prevention technology. It has been shown that mold contamination is prevented if the bread is heated for a few seconds before final packing.

The short heating time does not have any negative effects on the taste or the consistency of the bread. Heraeus now offers the bakeries the opportunity to use their testing facilities to convince themselves of the effectiveness of the technology.

Infrared heat is already widely used within the food sector, providing targeted and controllable heat to ready-made meals or chocolate products . In most cases, carbon infrared emitters are used because they heat the surfaces very quickly and maintain the desired temperature with a maximum deviation of 1°C.

Carbon infrared emitters for germ reduction on baking tools

Infrared heating transmits large amounts of energy in a short time. A disinfection with infrared radiation is a thermal disinfection, with the help of controlled heat. Depending on the power of the emitter, humidity and desired production line speed, sterilization is achieved between 120°C and 160°C within 10 to 30 seconds.

Carbon infrared emitters combine the highly effective medium wave radiation with sufficiently high surface powers. Thus, germs can also be killed on porous surfaces within less than one minute. Due to the depth effect of the carbon emitters the germs which already lie in several layers are also reached.

In the baking industry Carbon infrared systems provide simple, fast and safe disinfection of baking molds, conveyor belts and other baking utensils. By killing bacteria and spores, the fungus and mold formation is minimized. Carbon infrared emitters from Heraeus Noblelight are also particularly easy to handle.

They are a reaction time of 1-2 seconds so there is no risk of ovreheating the baked goods in the event of the unexpected stoppage of the conveyor system. They are also particularly compact, which simplifies retrofitting into an existing machine. The radiation field can be easily adapted to the width of the baking trays.

Read more about UV technology for the sterilization of surfaces and packaging material here.

Are you interested in more application examples?
Click here to order more case stories about the food industry!

Heraeus Noblelight GmbH
Heraeusstr. 12-14
D-63450 Hanau

Phone +49 6181 35 8539
Fax +49 6181 35 16 8539
E-Mail: hng-info@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks