Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooling with metal muscles: Engineers develop the refrigerator of the future

02.02.2016

Cooling is a hugely important process in today’s world. But how can cooling be carried out in future in a way that does not harm the climate and that helps to conserve natural resources? T

The approach taken by Professors Stefan Seelecke and Andreas Schütze from Saarland University focuses on systems that use shape memory materials, also known as ‘metal muscles’ or ‘artificial muscles’. Working together with researchers in Bochum, they are developing a new method of cooling in which heat and cold are transferred using ‘muscles’ made from a nickel-titanium alloy.


Engineers Marvin Schmidt (l.) and Johannes Ullrich from the research team headed by Professors Andreas Schütze and Stefan Seelecke are working on developing an environmentally sustainable and resource-friendly cooling method.

Photograph: Oliver Dietze

Extensive series of tests have yielded results that are now being used to develop a prototype cooling circuit that will be used to further increase the efficiency of the process.

The German Research Foundation (DFG), which has been funding the project for the last three years, has agreed to invest a further 500,000 euros. In total, the project has brought around 950,000 euros in funding to the region.

Cooling is carried out in all parts of the world. Refrigerators operate around-the-clock, air conditioning units cool offices, cooling systems help to keep computers and motors running smoothly. And the demand for cooling is being driven both by climate change and global population growth.

But more cooling systems come at a price – and not just a financial one. Increased cooling means increased consumption of electrical power and therefore higher emissions of greenhouse gases into the atmosphere, driving global warming even faster.

A more environmentally friendly cooling method has been developed by the research teams led by engineers Stefan Seelecke and Andreas Schütze in conjunction with the materials scientists Gunther Eggeler and Jan Frenzel at Ruhr University Bochum. The cooling process that they are developing does not require climatically harmful refrigerants and should consume less energy than the conventional cooling technologies used thus far.

‘In our systems, shape memory alloys (SMAs) are used to remove heat,’ explains Stefan Seelecke, Professor for Intelligent Material Systems at Saarland University. ‘Shape memory means that wires or sheets made from a nickel-titanium alloy have a certain ability to remember their original shape: If they undergo deformation, they will return to their earlier shape. So they are able to tense and flex like muscles. The fact that they absorb and release heat when they do so is something we exploit to achieve cooling,’ explains Seelecke.

If a nickel-titanium wire or sheet is deformed or pulled in tension, the crystal lattice structure can change creating strain within the material. This change in the crystal structure, known as a phase transition, causes the shape memory alloy to become hotter. If the stressed sample is allowed to relax after temperature equalization with the environment, it undergoes substantial cooling to a temperature about 20 degrees below ambient temperature.

‘The basic idea was to remove heat from a space – like the interior of a refrigerator – by allowing a pre-stressed, super-elastic shape memory material to relax and thus cool significantly. The heat taken up in this process is then released externally to the surroundings. The SMA is then re-stressed in the surroundings, thereby raising its temperature, before the cycle begins again,’ explains Seelecke.

In the experimental and modelling studies carried out so far, the researchers at Saarland University and the Center for Mechatronics and Automation Technology (ZeMA) in Saarbrücken have demonstrated that this type of cooling works and that it can be used in practice.

They used a model system to determine how to optimize the efficiency of the cooling process, examining such factors as how strongly the material has to be elongated or bent in order to achieve a certain cooling performance, or whether the process is more effective when carried out slowly or more rapidly. A thermal imaging camera was deployed to analyse precisely how the heating and cooling stages proceed.

‘We’re currently using these results to construct an optimized prototype for an air-cooling system. We are creating a cooling cycle in which hot air passes over one side of a rotating bundle of shape memory wires. Multiple wires are used in order to enhance cooling power. The bundle is mechanically stressed on one side as it rotates, thus heating up the SMA wires, as it rotates further the SMA relaxes and cools. The air to be cooled is guided past the cold wire bundle, thus cooling an adjacent space,’ says Professor Schütze from the University’s Measurement Technology Lab.

The team of engineers are currently fine tuning the process to optimize its efficiency. ‘Further optimization of the cooling process will involve modelling all component stages and then refining these models by comparing the predictions with experimental results. The data from the modelling and experimental work should allow us to determine the ideal number of shape memory wires for our rotating wire bundle as well as the optimum speed of rotation,’ explains Schütze.

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used free of charge. Please read and comply with the conditions of use.

Contact:

Saarland University
Prof. Dr. Stefan Seelecke: Tel.: +49 (0)681 302-71341; E-mail: stefan.seelecke@imsl.uni-saarland.de
Prof. Dr. Andreas Schütze: Tel.: +49 (0)681 302-4663; E-mail: schuetze@lmt.uni-saarland.de
Dipl.-Ing. Marvin Schmidt: Tel.: +49 (0)681 302-71347; E-mail: m.schmidt@lmt.uni-saarland.de

Ruhr University Bochum
Prof. Dr. Gunther Eggeler: Tel. +49 (0)234 32-23022; E-mail: gunther.eggeler@rub.de
Dr. Jan Frenzel: Tel. +49 (0)234 32-22547; E-mail: jan.a.frenzel@rub.de

Claudia Ehrlich P | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Power and Electrical Engineering:

nachricht Filter may be a match for fracking water
26.09.2017 | Swansea University

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>