Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cooling with metal muscles: Engineers develop the refrigerator of the future


Cooling is a hugely important process in today’s world. But how can cooling be carried out in future in a way that does not harm the climate and that helps to conserve natural resources? T

The approach taken by Professors Stefan Seelecke and Andreas Schütze from Saarland University focuses on systems that use shape memory materials, also known as ‘metal muscles’ or ‘artificial muscles’. Working together with researchers in Bochum, they are developing a new method of cooling in which heat and cold are transferred using ‘muscles’ made from a nickel-titanium alloy.

Engineers Marvin Schmidt (l.) and Johannes Ullrich from the research team headed by Professors Andreas Schütze and Stefan Seelecke are working on developing an environmentally sustainable and resource-friendly cooling method.

Photograph: Oliver Dietze

Extensive series of tests have yielded results that are now being used to develop a prototype cooling circuit that will be used to further increase the efficiency of the process.

The German Research Foundation (DFG), which has been funding the project for the last three years, has agreed to invest a further 500,000 euros. In total, the project has brought around 950,000 euros in funding to the region.

Cooling is carried out in all parts of the world. Refrigerators operate around-the-clock, air conditioning units cool offices, cooling systems help to keep computers and motors running smoothly. And the demand for cooling is being driven both by climate change and global population growth.

But more cooling systems come at a price – and not just a financial one. Increased cooling means increased consumption of electrical power and therefore higher emissions of greenhouse gases into the atmosphere, driving global warming even faster.

A more environmentally friendly cooling method has been developed by the research teams led by engineers Stefan Seelecke and Andreas Schütze in conjunction with the materials scientists Gunther Eggeler and Jan Frenzel at Ruhr University Bochum. The cooling process that they are developing does not require climatically harmful refrigerants and should consume less energy than the conventional cooling technologies used thus far.

‘In our systems, shape memory alloys (SMAs) are used to remove heat,’ explains Stefan Seelecke, Professor for Intelligent Material Systems at Saarland University. ‘Shape memory means that wires or sheets made from a nickel-titanium alloy have a certain ability to remember their original shape: If they undergo deformation, they will return to their earlier shape. So they are able to tense and flex like muscles. The fact that they absorb and release heat when they do so is something we exploit to achieve cooling,’ explains Seelecke.

If a nickel-titanium wire or sheet is deformed or pulled in tension, the crystal lattice structure can change creating strain within the material. This change in the crystal structure, known as a phase transition, causes the shape memory alloy to become hotter. If the stressed sample is allowed to relax after temperature equalization with the environment, it undergoes substantial cooling to a temperature about 20 degrees below ambient temperature.

‘The basic idea was to remove heat from a space – like the interior of a refrigerator – by allowing a pre-stressed, super-elastic shape memory material to relax and thus cool significantly. The heat taken up in this process is then released externally to the surroundings. The SMA is then re-stressed in the surroundings, thereby raising its temperature, before the cycle begins again,’ explains Seelecke.

In the experimental and modelling studies carried out so far, the researchers at Saarland University and the Center for Mechatronics and Automation Technology (ZeMA) in Saarbrücken have demonstrated that this type of cooling works and that it can be used in practice.

They used a model system to determine how to optimize the efficiency of the cooling process, examining such factors as how strongly the material has to be elongated or bent in order to achieve a certain cooling performance, or whether the process is more effective when carried out slowly or more rapidly. A thermal imaging camera was deployed to analyse precisely how the heating and cooling stages proceed.

‘We’re currently using these results to construct an optimized prototype for an air-cooling system. We are creating a cooling cycle in which hot air passes over one side of a rotating bundle of shape memory wires. Multiple wires are used in order to enhance cooling power. The bundle is mechanically stressed on one side as it rotates, thus heating up the SMA wires, as it rotates further the SMA relaxes and cools. The air to be cooled is guided past the cold wire bundle, thus cooling an adjacent space,’ says Professor Schütze from the University’s Measurement Technology Lab.

The team of engineers are currently fine tuning the process to optimize its efficiency. ‘Further optimization of the cooling process will involve modelling all component stages and then refining these models by comparing the predictions with experimental results. The data from the modelling and experimental work should allow us to determine the ideal number of shape memory wires for our rotating wire bundle as well as the optimum speed of rotation,’ explains Schütze.

Press photographs are available at and can be used free of charge. Please read and comply with the conditions of use.


Saarland University
Prof. Dr. Stefan Seelecke: Tel.: +49 (0)681 302-71341; E-mail:
Prof. Dr. Andreas Schütze: Tel.: +49 (0)681 302-4663; E-mail:
Dipl.-Ing. Marvin Schmidt: Tel.: +49 (0)681 302-71347; E-mail:

Ruhr University Bochum
Prof. Dr. Gunther Eggeler: Tel. +49 (0)234 32-23022; E-mail:
Dr. Jan Frenzel: Tel. +49 (0)234 32-22547; E-mail:

Claudia Ehrlich P | Universität des Saarlandes
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>