Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleanroom on demand

29.08.2016

“Clean Multipurpose Cover” is the world’s first flexible cleanroom system

The smallest degree of contamination can lead to major quality issues across many industries. Should, for example, any impurities occur on microchips, space probes and lenses, this can lead to defects or faulty end devices.


The “Clean Multipurpose Cover” is the world’s first flexible cleanroom system which protects products against contamination during transportation.

Source: Fraunhofer IPA, Photo: Rainer Bez

To avoid damage, companies tend to outsource the relevant manufacturing and assembly steps for high-quality products to cleanrooms. However, these are expensive, limited in their availability and fail to offer protection against contamination as a result of transportation.

Fraunhofer IPA has now developed the world’s first mobile cleanroom system in the form of its “Clean Multipurpose Cover”. It can be set up flexibly and ensures the sterility of products during transportation.

Particulate impurities and filmic contaminations incur additional costs in many industries. The semi-conductor, food, automotive, air and space exploration technology and pharmaceutical sectors, among others, may be affected by this.

Tanja Meyer, Project Manager at Fraunhofer IPA, explains: “If products become contaminated, they are either rejected or must subsequently be cleaned.” Meyer goes on to clarify that if companies are unable to rely on the cleanliness of their manufacturing environment, retrospective analyses are required. Both are time and cost-intensive.

Companies bypass this problem by manufacturing sensitive products in cleanrooms. However, there are also problems involved in this. Meyer expands: “Not all companies, above all SMEs, have their own cleanroom available. Of course, they can rent one or have the parts cleaned externally, but this is not financially viable over the long term in many cases.”

Furthermore, contamination can still occur during transportation. Static cleanrooms, as they exclusively are these days, cannot protect products outside of their own four walls. With this in mind, scientists at Fraunhofer IPA have already received regular requests from industry to develop a cost-effective, flexible solution.

Companies save energy and maintenance costs

The Stuttgart-based scientists have fulfilled these requirements with their “Clean Multipurpose Cover” solution. The world’s first flexible cleanroom system combines the technical cleanliness standards of a cleanroom with a product which can be set up quickly and simply wherever needed. In being operated “on demand”, the company is not subject to enforced occupancy rates which come with static cleanrooms, thereby making enormous savings in energy and maintenance costs. Another benefit is presented by the swift assembly time of under one hour.

The flexible cleanroom solution can then be used immediately after a short start-up phase. Fraunhofer IPA developed an airflow concept for their system composed of low-TVOC and low abrasion materials with connected filter system.

Meyer explains: “This enables us to guarantee a contamination-free manufacturing environment up to cleanliness class of ISO 3, certified in accordance with DIN ISO 14644-1.” The Clean Multipurpose Cover has a modular structure and can be individually configured as required. It is available in different sizes up to 4m2, with or without a floor. The constructed system can be transported, with a mid-range model weighing no more than 20kg. It is therefore fully functional.

Cleanroom feasibility confirmed in lab tests

In June 2016, scientists at Fraunhofer IPA produced the first prototype. “The tests conducted in the cleanroom laboratories of the Center for Contamination Control affirmed the operational capability of the solution,” Mayer was pleased to confirm. Companies can now order customer-specific models from Fraunhofer IPA.

Our scientists have identified the requirements in exchanges with research and industry partners. Costs are determined on a customer-specific basis, varying according to requirements, size and air purity class. Currently, the Stuttgart-based scientists are working on further developing the system for industry and customer-specific requirements such as chemical and microbiological contaminants.

Press office:
Jörg-Dieter Walz, phone +49 711 970-1667, presse@ipa.fraunhofer.de, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Nobelstraße 12, 70569 Stuttgart

Technical contact partner:
Frank Bürger, phone +49 711 970-1148, frank.buerger@ipa.fraunhofer.de
Tanja Meyer, phone +49 711 970-1625, tanja.meyer@ipa.fraunhofer.de

Editorial team:
Ramona Hönl, phone +49 711 970-1638, ramona.hoenl@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>