Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleanroom on demand

29.08.2016

“Clean Multipurpose Cover” is the world’s first flexible cleanroom system

The smallest degree of contamination can lead to major quality issues across many industries. Should, for example, any impurities occur on microchips, space probes and lenses, this can lead to defects or faulty end devices.


The “Clean Multipurpose Cover” is the world’s first flexible cleanroom system which protects products against contamination during transportation.

Source: Fraunhofer IPA, Photo: Rainer Bez

To avoid damage, companies tend to outsource the relevant manufacturing and assembly steps for high-quality products to cleanrooms. However, these are expensive, limited in their availability and fail to offer protection against contamination as a result of transportation.

Fraunhofer IPA has now developed the world’s first mobile cleanroom system in the form of its “Clean Multipurpose Cover”. It can be set up flexibly and ensures the sterility of products during transportation.

Particulate impurities and filmic contaminations incur additional costs in many industries. The semi-conductor, food, automotive, air and space exploration technology and pharmaceutical sectors, among others, may be affected by this.

Tanja Meyer, Project Manager at Fraunhofer IPA, explains: “If products become contaminated, they are either rejected or must subsequently be cleaned.” Meyer goes on to clarify that if companies are unable to rely on the cleanliness of their manufacturing environment, retrospective analyses are required. Both are time and cost-intensive.

Companies bypass this problem by manufacturing sensitive products in cleanrooms. However, there are also problems involved in this. Meyer expands: “Not all companies, above all SMEs, have their own cleanroom available. Of course, they can rent one or have the parts cleaned externally, but this is not financially viable over the long term in many cases.”

Furthermore, contamination can still occur during transportation. Static cleanrooms, as they exclusively are these days, cannot protect products outside of their own four walls. With this in mind, scientists at Fraunhofer IPA have already received regular requests from industry to develop a cost-effective, flexible solution.

Companies save energy and maintenance costs

The Stuttgart-based scientists have fulfilled these requirements with their “Clean Multipurpose Cover” solution. The world’s first flexible cleanroom system combines the technical cleanliness standards of a cleanroom with a product which can be set up quickly and simply wherever needed. In being operated “on demand”, the company is not subject to enforced occupancy rates which come with static cleanrooms, thereby making enormous savings in energy and maintenance costs. Another benefit is presented by the swift assembly time of under one hour.

The flexible cleanroom solution can then be used immediately after a short start-up phase. Fraunhofer IPA developed an airflow concept for their system composed of low-TVOC and low abrasion materials with connected filter system.

Meyer explains: “This enables us to guarantee a contamination-free manufacturing environment up to cleanliness class of ISO 3, certified in accordance with DIN ISO 14644-1.” The Clean Multipurpose Cover has a modular structure and can be individually configured as required. It is available in different sizes up to 4m2, with or without a floor. The constructed system can be transported, with a mid-range model weighing no more than 20kg. It is therefore fully functional.

Cleanroom feasibility confirmed in lab tests

In June 2016, scientists at Fraunhofer IPA produced the first prototype. “The tests conducted in the cleanroom laboratories of the Center for Contamination Control affirmed the operational capability of the solution,” Mayer was pleased to confirm. Companies can now order customer-specific models from Fraunhofer IPA.

Our scientists have identified the requirements in exchanges with research and industry partners. Costs are determined on a customer-specific basis, varying according to requirements, size and air purity class. Currently, the Stuttgart-based scientists are working on further developing the system for industry and customer-specific requirements such as chemical and microbiological contaminants.

Press office:
Jörg-Dieter Walz, phone +49 711 970-1667, presse@ipa.fraunhofer.de, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Nobelstraße 12, 70569 Stuttgart

Technical contact partner:
Frank Bürger, phone +49 711 970-1148, frank.buerger@ipa.fraunhofer.de
Tanja Meyer, phone +49 711 970-1625, tanja.meyer@ipa.fraunhofer.de

Editorial team:
Ramona Hönl, phone +49 711 970-1638, ramona.hoenl@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>