Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleanroom on demand

29.08.2016

“Clean Multipurpose Cover” is the world’s first flexible cleanroom system

The smallest degree of contamination can lead to major quality issues across many industries. Should, for example, any impurities occur on microchips, space probes and lenses, this can lead to defects or faulty end devices.


The “Clean Multipurpose Cover” is the world’s first flexible cleanroom system which protects products against contamination during transportation.

Source: Fraunhofer IPA, Photo: Rainer Bez

To avoid damage, companies tend to outsource the relevant manufacturing and assembly steps for high-quality products to cleanrooms. However, these are expensive, limited in their availability and fail to offer protection against contamination as a result of transportation.

Fraunhofer IPA has now developed the world’s first mobile cleanroom system in the form of its “Clean Multipurpose Cover”. It can be set up flexibly and ensures the sterility of products during transportation.

Particulate impurities and filmic contaminations incur additional costs in many industries. The semi-conductor, food, automotive, air and space exploration technology and pharmaceutical sectors, among others, may be affected by this.

Tanja Meyer, Project Manager at Fraunhofer IPA, explains: “If products become contaminated, they are either rejected or must subsequently be cleaned.” Meyer goes on to clarify that if companies are unable to rely on the cleanliness of their manufacturing environment, retrospective analyses are required. Both are time and cost-intensive.

Companies bypass this problem by manufacturing sensitive products in cleanrooms. However, there are also problems involved in this. Meyer expands: “Not all companies, above all SMEs, have their own cleanroom available. Of course, they can rent one or have the parts cleaned externally, but this is not financially viable over the long term in many cases.”

Furthermore, contamination can still occur during transportation. Static cleanrooms, as they exclusively are these days, cannot protect products outside of their own four walls. With this in mind, scientists at Fraunhofer IPA have already received regular requests from industry to develop a cost-effective, flexible solution.

Companies save energy and maintenance costs

The Stuttgart-based scientists have fulfilled these requirements with their “Clean Multipurpose Cover” solution. The world’s first flexible cleanroom system combines the technical cleanliness standards of a cleanroom with a product which can be set up quickly and simply wherever needed. In being operated “on demand”, the company is not subject to enforced occupancy rates which come with static cleanrooms, thereby making enormous savings in energy and maintenance costs. Another benefit is presented by the swift assembly time of under one hour.

The flexible cleanroom solution can then be used immediately after a short start-up phase. Fraunhofer IPA developed an airflow concept for their system composed of low-TVOC and low abrasion materials with connected filter system.

Meyer explains: “This enables us to guarantee a contamination-free manufacturing environment up to cleanliness class of ISO 3, certified in accordance with DIN ISO 14644-1.” The Clean Multipurpose Cover has a modular structure and can be individually configured as required. It is available in different sizes up to 4m2, with or without a floor. The constructed system can be transported, with a mid-range model weighing no more than 20kg. It is therefore fully functional.

Cleanroom feasibility confirmed in lab tests

In June 2016, scientists at Fraunhofer IPA produced the first prototype. “The tests conducted in the cleanroom laboratories of the Center for Contamination Control affirmed the operational capability of the solution,” Mayer was pleased to confirm. Companies can now order customer-specific models from Fraunhofer IPA.

Our scientists have identified the requirements in exchanges with research and industry partners. Costs are determined on a customer-specific basis, varying according to requirements, size and air purity class. Currently, the Stuttgart-based scientists are working on further developing the system for industry and customer-specific requirements such as chemical and microbiological contaminants.

Press office:
Jörg-Dieter Walz, phone +49 711 970-1667, presse@ipa.fraunhofer.de, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Nobelstraße 12, 70569 Stuttgart

Technical contact partner:
Frank Bürger, phone +49 711 970-1148, frank.buerger@ipa.fraunhofer.de
Tanja Meyer, phone +49 711 970-1625, tanja.meyer@ipa.fraunhofer.de

Editorial team:
Ramona Hönl, phone +49 711 970-1638, ramona.hoenl@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>