Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avoiding efficiency losses in silicon solar cells already in the production process

28.10.2015

From basic idea to implementation: University of Konstanz, Germany, invested 10 years of research and development work: Under operating conditions, however, Cz-silicon solar cells suffer from so-called light-induced degradation (LID), due to which the efficiency of a Cz-silicon solar cell is considerably reduced after only a few hours of exposure to solar radiation. Depending on the material and production process, the loss in efficiency can be more than one percent absolute.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Konstanz in patenting and marketing its innovation.

One of the biggest challenges in the context of ‘renewable energies` is the even more efficient use of the raw materials available to us. Particularly when it comes to generating electricity from sunlight, a lot of research is carried out on how to further increase conversion efficiency of solar cells.


Researchers at the Photovoltaics Division of the University of Konstanz: Professor Giso Hahn, Svenja Wilking und Axel Herguth (from left).

TLB GmbH

In the past decade, the efficiency of solar cells in industrial mass production has been continuously improved. About 15 years ago, solar cells were able to convert only approx. 15 percent of solar radiation into electricity. In the meantime, efficiency could be increased to approx. 20 percent.

This excellent efficiency is only reached on industrial scale with monocrystalline solar cells using silicon wafers grown by the Czochralski (Cz) technique. Under operating conditions, however, Cz-silicon solar cells suffer from so-called light-induced degradation (LID), due to which the efficiency of a Cz-silicon solar cell is considerably reduced after only a few hours of exposure to solar radiation. Depending on the material and production process, the loss in efficiency can be more than one percent absolute.

Researchers at the Photovoltaics Division of the University of Konstanz introduced a method to neutralize this type of degradation as early as in 2006. The process developed and optimized over the years by Axel Herguth, Svenja Wilking and Professor Giso Hahn can easily be integrated into the production process. The scientists made use of the fact that the degraded solar cells can be regenerated by exposing them to light energy at temperatures above 100 degrees Celsius. Alternatively, regeneration can also be achieved using voltage instead of light.

The regeneration process can be integrated at different stages into the production sequence, for solar cells, e.g., directly after the co-firing process or separately at the end of production. Another option is to apply the regeneration process to finished modules.

The economic potential of the regeneration effect is enormous: If the degradation-caused loss in efficiency of one percent absolute is nearly completely offset, this results in an additional power output of approx. five percent. With a 100 MWp line, this corresponds to more than one million euros per year.

"This means the return on invest is secured after only a few months, which significantly increases economic attractiveness and the opportunities for use of this groundbreaking technology," explains Professor Hahn, Head of Photovoltaic Division at the University of Konstanz.

Patents for the process and the regeneration furnace have already been granted in the most important industrial nations and regions such as in the United States, in Europe and China. In the meantime, first installations based on the patented method have been integrated into production processes. However, it is also likely that a number of imitation products have appeared on the market. "Our key challenge for the coming years will be to enforce the patents held by the University of Konstanz," says Dr.-Ing. Hubert Siller, Innovation Manager at TLB, Karlsruhe.

In recent years, this well-known method has been further developed and modified by Axel Herguth and Svenja Wilking, who are engaged in research at the University of Konstanz. The enhanced process control allows the regeneration process to be carried out much faster during the co-firing step. According to the researchers, this is due to a larger amount of hydrogen released from the silicon nitride anti-reflective coating into the silicon during co-firing. The process can thus be sped up considerably, improving its efficiency and making it attractive for inline processes in industrial mass production, for example. Ideally, this process may follow or even be integrated into the co-firing step. Professor Hahn is optimistic about the future: "We are confident that the regeneration method discovered and developed by our team of researchers will become an integral part of a lot of new solar cell production lines because it helps to achieve the high level of stable efficiency that is required by the market. Moreover, current production lines can be retrofitted with minimal effort by using this unique regeneration technology.”

Technologie-Lizenz-Büro (TLB) GmbH supports the University of Konstanz in patenting and marketing its innovation. Acting on behalf of the University, TLB is in charge of the commercial implementation of this future-orientated technology at a global level. For more detailed information, please contact Dr.-Ing. Hubert Siller, email: siller@tlb.de

Weitere Informationen:

http://www.tlb.en
http://cms.uni-konstanz.de/en/physik/hahn/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Balancing nuclear and renewable energy
26.04.2018 | DOE/Argonne National Laboratory

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>