Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic precision: technologies for the next-but-one generation of microchips

24.05.2016

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two years. At that time he was regarded as a visionary and pioneering thinker. Today, over 50 years later, we see that the integration density of electronic circuits is still continuing to grow.


Image 1: The photo shows a discharge generated plasma.

© Fraunhofer ILT, Aachen, Germany.


Image 2: The coating of mirrors is carried out with atomic precision at Fraunhofer IOF in Jena.

© Fraunhofer IOF, Jena, Germany.

Now we can store whole libraries on a chip in our smartphones. That was primarily made possible by revolutionary advances in optical technologies and materials science. And although it’s becoming apparent that there are physical limits, developments are not over yet: scientists at Fraunhofer Institutes in Jena and Aachen are working on the next generation of technology for producing even smaller structures.

New target materials for the 6.7 nm radiation source

A key constraint for the lithographic production of ever smaller structures is the wavelength of the light used. In the 1970s the UV light from a mercury vapor lamp was sufficient; the 1990s saw the emergence of excimer lasers with wavelengths of 193 nm. Today, the semiconductor industry combines these radiation sources with refined methods of optical lithography to manufacture structures as small as 14 nm across.

EUV lithography is a completely new technology that has been developed over the last ten years. It works by using extreme ultraviolet (EUV) radiation at a wavelength of 13.5 nm, which is generated by evaporating a droplet of tin with a high-power laser. The aim is to harness the emitted EUV radiation to produce structures with a size of 10 nm or less.

Having played a leading part in developing EUV technology, scientists at Fraunhofer ILT are now focused on the next step: technology that uses radiation with a wavelength of around 6.7 nm. Instead of tin, they are working with targets made of gadolinium or terbium alloys, as these facilitate correspondingly shorter wavelengths.

Teams from the two Fraunhofer Institutes worked together to develop a new optical system with which to characterize the radiation source. This system enables them to measure factors such as light output to a high degree of spatial and spectral resolution.

The output power of the radiation source is now enough to carry out trials on new mirror coatings or light-sensitive varnishes (resists). Development work on the radiation source is ongoing to achieve the necessary power scaling.

Coating mirrors with atomic precision

Unlike traditional optical lithography, EUV lithography functions use only reflective optics; this means the mirrors have to meet extremely exacting requirements. Nowadays the thickness of mirror coatings must be correct to around 10 picometers. That is less than the diameter of an atom.

It is laborious and expensive to generate EUV radiation, and consequently every percentage point of reflectivity matters. In the case of mirrors for 13 nm radiation, it has been possible to achieve a reflectivity of around 65% using alternating films of silicon and molybdenum. When it comes to mirrors for 6.7 nm radiation, experts from Fraunhofer IOF in Jena have developed special systems using lanthanum and boron compounds. Here, too, they are battling to reach the theoretical limit of around 70%.

Applications in many areas

Today there are already more mobile telephones than human beings on Earth – a fact that was partly made possible by enormous advances in microlithography. This field will continue to be of the utmost importance over the coming years, including for new subject areas such as industry 4.0 or the Internet of Things.

That is why experts from the Fraunhofer Institutes for Applied Optics and Precision Engineering IOF and for Laser Technology ILT have been working since the start of 2014 on developing the basic principles for lithography at even shorter wavelengths. They are collaborating with industrial partners Carl Zeiss SMT and ASML in the “Beyond EUV” project, which runs to the end of 2016, to develop key components for 6.7 nm wavelength technology.

These new lithographic techniques will make it possible to produce structures with a thickness of just a few atoms. There are already lots of ideas for how to use integrated circuits formed from such structures: alongside even higher storage capacity for cloud applications and big data processes, they could also be used for mind-controlled prosthetic limbs or more personalized medicine.

Contact

Dr. rer. nat Klaus Bergmann
Group Manager EUV Technology
Telephone +49 241 8906-302
klaus.bergmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

Prof. Dr. Norbert Kaiser
Head of Optical Coatings
Telephone +49 3641 807-321
norbert.kaiser@iof.fraunhofer.de
Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany |

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.iof.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Atomic EUV Fraunhofer-Institut ILT IOF Laser Lasertechnik integrated circuits microchips wavelength

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>