Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic precision: technologies for the next-but-one generation of microchips

24.05.2016

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two years. At that time he was regarded as a visionary and pioneering thinker. Today, over 50 years later, we see that the integration density of electronic circuits is still continuing to grow.


Image 1: The photo shows a discharge generated plasma.

© Fraunhofer ILT, Aachen, Germany.


Image 2: The coating of mirrors is carried out with atomic precision at Fraunhofer IOF in Jena.

© Fraunhofer IOF, Jena, Germany.

Now we can store whole libraries on a chip in our smartphones. That was primarily made possible by revolutionary advances in optical technologies and materials science. And although it’s becoming apparent that there are physical limits, developments are not over yet: scientists at Fraunhofer Institutes in Jena and Aachen are working on the next generation of technology for producing even smaller structures.

New target materials for the 6.7 nm radiation source

A key constraint for the lithographic production of ever smaller structures is the wavelength of the light used. In the 1970s the UV light from a mercury vapor lamp was sufficient; the 1990s saw the emergence of excimer lasers with wavelengths of 193 nm. Today, the semiconductor industry combines these radiation sources with refined methods of optical lithography to manufacture structures as small as 14 nm across.

EUV lithography is a completely new technology that has been developed over the last ten years. It works by using extreme ultraviolet (EUV) radiation at a wavelength of 13.5 nm, which is generated by evaporating a droplet of tin with a high-power laser. The aim is to harness the emitted EUV radiation to produce structures with a size of 10 nm or less.

Having played a leading part in developing EUV technology, scientists at Fraunhofer ILT are now focused on the next step: technology that uses radiation with a wavelength of around 6.7 nm. Instead of tin, they are working with targets made of gadolinium or terbium alloys, as these facilitate correspondingly shorter wavelengths.

Teams from the two Fraunhofer Institutes worked together to develop a new optical system with which to characterize the radiation source. This system enables them to measure factors such as light output to a high degree of spatial and spectral resolution.

The output power of the radiation source is now enough to carry out trials on new mirror coatings or light-sensitive varnishes (resists). Development work on the radiation source is ongoing to achieve the necessary power scaling.

Coating mirrors with atomic precision

Unlike traditional optical lithography, EUV lithography functions use only reflective optics; this means the mirrors have to meet extremely exacting requirements. Nowadays the thickness of mirror coatings must be correct to around 10 picometers. That is less than the diameter of an atom.

It is laborious and expensive to generate EUV radiation, and consequently every percentage point of reflectivity matters. In the case of mirrors for 13 nm radiation, it has been possible to achieve a reflectivity of around 65% using alternating films of silicon and molybdenum. When it comes to mirrors for 6.7 nm radiation, experts from Fraunhofer IOF in Jena have developed special systems using lanthanum and boron compounds. Here, too, they are battling to reach the theoretical limit of around 70%.

Applications in many areas

Today there are already more mobile telephones than human beings on Earth – a fact that was partly made possible by enormous advances in microlithography. This field will continue to be of the utmost importance over the coming years, including for new subject areas such as industry 4.0 or the Internet of Things.

That is why experts from the Fraunhofer Institutes for Applied Optics and Precision Engineering IOF and for Laser Technology ILT have been working since the start of 2014 on developing the basic principles for lithography at even shorter wavelengths. They are collaborating with industrial partners Carl Zeiss SMT and ASML in the “Beyond EUV” project, which runs to the end of 2016, to develop key components for 6.7 nm wavelength technology.

These new lithographic techniques will make it possible to produce structures with a thickness of just a few atoms. There are already lots of ideas for how to use integrated circuits formed from such structures: alongside even higher storage capacity for cloud applications and big data processes, they could also be used for mind-controlled prosthetic limbs or more personalized medicine.

Contact

Dr. rer. nat Klaus Bergmann
Group Manager EUV Technology
Telephone +49 241 8906-302
klaus.bergmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

Prof. Dr. Norbert Kaiser
Head of Optical Coatings
Telephone +49 3641 807-321
norbert.kaiser@iof.fraunhofer.de
Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany |

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.iof.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Atomic EUV Fraunhofer-Institut ILT IOF Laser Lasertechnik integrated circuits microchips wavelength

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>