Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ask the crowd: Robots learn faster, better with online helpers

27.06.2014

Sometimes it takes a village to teach a robot.

University of Washington computer scientists have shown that crowdsourcing can be a quick and effective way to teach a robot how to complete tasks. Instead of learning from just one human, robots could one day query the larger online community, asking for instructions or input on the best way to set the table or water the garden.


The UW’s robot builds a turtle model.

U of Washington

The research team presented its results at the 2014 Institute of Electrical and Electronics Engineers International Conference on Robotics and Automation in Hong Kong in early June.

“We’re trying to create a method for a robot to seek help from the whole world when it’s puzzled by something,” said Rajesh Rao, an associate professor of computer science and engineering and director of the Center for Sensorimotor Neural Engineering at the UW. “This is a way to go beyond just one-on-one interaction between a human and a robot by also learning from other humans around the world.”

... more about:
»Automation »Conference »action »complete »humans

Learning by imitating a human is a proven approach to teach a robot to perform tasks, but it can take a lot of time. Imagine having to teach a robot how to load the dishwasher – it might take many repetitious lessons for the robot to learn how to hold different types of cookware and cutlery and how to most efficiently fill the machine.

But if the robot could learn a task’s basic steps, then ask the online community for additional input, it could collect more data on how to complete this task efficiently and correctly.

“Because our robots use machine-learning techniques, they require a lot of data to build accurate models of the task. The more data they have, the better model they can build. Our solution is to get that data from crowdsourcing,” said Maya Cakmak, a UW assistant professor of computer science and engineering.

The research team, led by professors Rao and Cakmak, also includes UW computer science and engineering graduate student Michael Jae-Yoon Chung and undergraduate Maxwell Forbes. The team designed a study that taps into the online crowdsourcing community to teach a robot a model-building task. To begin, study participants built a simple model – a car, tree, turtle and snake, among others – out of colored Lego blocks. Then, they asked the robot to build a similar object. But based on the few examples provided by the participants, the robot was unable to build complete models.

To gather more input about building the objects, the robots turned to the crowd. They hired people on Amazon Mechanical Turk, a crowdsourcing site, to build similar models of a car, tree, turtle, snake and others. From more than 100 crowd-generated models of each shape, the robot searched for the best models to build based on difficulty to construct, similarity to the original and the online community’s ratings of the models.

The robot then built the best models of each participant’s shape.

This type of learning is called “goal-based imitation,” and it leverages the growing ability of robots to infer what their human operators want, relying on the robot to come up with the best possible way of achieving the goal when considering factors such as time and difficulty. For example, a robot might “watch” a human building a turtle model, infer the important qualities to carry over, then build a model that resembles the original, but is perhaps simpler so it’s easier for the robot to construct.

“The end result is still a turtle, but it’s something that is manageable for the robot and similar enough to the original model, so it achieves the same goal,” Cakmak explained.

Study participants generally preferred crowdsourced versions that looked the most like their original designs. In general, the robot’s final models were simpler than the starting designs – and it was able to successfully build these models, which wasn’t always the case when starting with the study participants’ initial designs.

The team applied the same idea to learning manipulation actions on a two-armed robot. This time, users physically demonstrated new actions to the robot. Then, the robot imagined new scenarios in which it did not know how to perform those actions. Using abstract, interactive visualizations of the action, it asked the crowd to provide new ways of performing actions in those new scenarios. This work will be presented at the Conference on Human Computation and Crowdsourcing in November.

Other research teams at Brown University, Worcester Polytechnic Institute and Cornell University are working on similar ideas for developing robots that have the ability to learn new capabilities through crowdsourcing.

The UW team is now looking at using crowdsourcing and community-sourcing to teach robots more complex tasks such as finding and fetching items in a multi-floor building. The researchers envision a future in which our personal robots will engage increasingly with humans online, learning new skills and tasks to better assist us in everyday life.

This research was funded by the U.S. Office of Naval Research and the National Science Foundation.

###

For more information, contact Cakmak at mcakmak@cs.washington.edu or 206-685-5643 and Rao at rao@cs.washington.edu or 206-914-4719.

Michelle Ma | Eurek Alert!

Further reports about: Automation Conference action complete humans

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>