Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ask the crowd: Robots learn faster, better with online helpers

27.06.2014

Sometimes it takes a village to teach a robot.

University of Washington computer scientists have shown that crowdsourcing can be a quick and effective way to teach a robot how to complete tasks. Instead of learning from just one human, robots could one day query the larger online community, asking for instructions or input on the best way to set the table or water the garden.


The UW’s robot builds a turtle model.

U of Washington

The research team presented its results at the 2014 Institute of Electrical and Electronics Engineers International Conference on Robotics and Automation in Hong Kong in early June.

“We’re trying to create a method for a robot to seek help from the whole world when it’s puzzled by something,” said Rajesh Rao, an associate professor of computer science and engineering and director of the Center for Sensorimotor Neural Engineering at the UW. “This is a way to go beyond just one-on-one interaction between a human and a robot by also learning from other humans around the world.”

... more about:
»Automation »Conference »action »complete »humans

Learning by imitating a human is a proven approach to teach a robot to perform tasks, but it can take a lot of time. Imagine having to teach a robot how to load the dishwasher – it might take many repetitious lessons for the robot to learn how to hold different types of cookware and cutlery and how to most efficiently fill the machine.

But if the robot could learn a task’s basic steps, then ask the online community for additional input, it could collect more data on how to complete this task efficiently and correctly.

“Because our robots use machine-learning techniques, they require a lot of data to build accurate models of the task. The more data they have, the better model they can build. Our solution is to get that data from crowdsourcing,” said Maya Cakmak, a UW assistant professor of computer science and engineering.

The research team, led by professors Rao and Cakmak, also includes UW computer science and engineering graduate student Michael Jae-Yoon Chung and undergraduate Maxwell Forbes. The team designed a study that taps into the online crowdsourcing community to teach a robot a model-building task. To begin, study participants built a simple model – a car, tree, turtle and snake, among others – out of colored Lego blocks. Then, they asked the robot to build a similar object. But based on the few examples provided by the participants, the robot was unable to build complete models.

To gather more input about building the objects, the robots turned to the crowd. They hired people on Amazon Mechanical Turk, a crowdsourcing site, to build similar models of a car, tree, turtle, snake and others. From more than 100 crowd-generated models of each shape, the robot searched for the best models to build based on difficulty to construct, similarity to the original and the online community’s ratings of the models.

The robot then built the best models of each participant’s shape.

This type of learning is called “goal-based imitation,” and it leverages the growing ability of robots to infer what their human operators want, relying on the robot to come up with the best possible way of achieving the goal when considering factors such as time and difficulty. For example, a robot might “watch” a human building a turtle model, infer the important qualities to carry over, then build a model that resembles the original, but is perhaps simpler so it’s easier for the robot to construct.

“The end result is still a turtle, but it’s something that is manageable for the robot and similar enough to the original model, so it achieves the same goal,” Cakmak explained.

Study participants generally preferred crowdsourced versions that looked the most like their original designs. In general, the robot’s final models were simpler than the starting designs – and it was able to successfully build these models, which wasn’t always the case when starting with the study participants’ initial designs.

The team applied the same idea to learning manipulation actions on a two-armed robot. This time, users physically demonstrated new actions to the robot. Then, the robot imagined new scenarios in which it did not know how to perform those actions. Using abstract, interactive visualizations of the action, it asked the crowd to provide new ways of performing actions in those new scenarios. This work will be presented at the Conference on Human Computation and Crowdsourcing in November.

Other research teams at Brown University, Worcester Polytechnic Institute and Cornell University are working on similar ideas for developing robots that have the ability to learn new capabilities through crowdsourcing.

The UW team is now looking at using crowdsourcing and community-sourcing to teach robots more complex tasks such as finding and fetching items in a multi-floor building. The researchers envision a future in which our personal robots will engage increasingly with humans online, learning new skills and tasks to better assist us in everyday life.

This research was funded by the U.S. Office of Naval Research and the National Science Foundation.

###

For more information, contact Cakmak at mcakmak@cs.washington.edu or 206-685-5643 and Rao at rao@cs.washington.edu or 206-914-4719.

Michelle Ma | Eurek Alert!

Further reports about: Automation Conference action complete humans

More articles from Power and Electrical Engineering:

nachricht Gearless drive system for elevator doors combines safety and versatility
31.03.2015 | Siemens AG

nachricht Trojan Transit Rolling Out
27.03.2015 | University of Arkansas at Little Rock

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>