Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant Behavior Might Shed Insight on Problems Facing Electronics Design

03.11.2014

Michael Hsiao plans to harness swarm intelligence based on the efficient behavior of ants.

Why would this matter?

Ant colonies are known for their efficiency in finding the best route to food sources. So Hsiao, professor of electrical and computer engineering at Virginia Tech, and an expert in design verification has tackled one of the major problems facing electronics design in a novel way.


Virginia Tech

Virginia Tech engineer Michael Hsiao has developed mathematical formulas that simulate the methods used by the ants when they are seeking nourishment. Hsiao plans to use these algorithms to improve the accuracy in electronics design.

He has developed mathematical formulas that simulate the methods used by the ants when they are seeking nourishment.

Hsiao plans to use these algorithms to improve the accuracy in electronics design when one needs to validate and verify that the design meets the spec.

The National Science Foundation has awarded him a grant of $418,345 to continue exploring his ideas.

Hsiao explained that as electronics designers add more features and capabilities into ever-smaller electronics hardware, such as the latest versions of cell phones, they are increasing the difficulty of verifying that their designs perform as planned.

Verification difficulty grows exponentially as the design grows in size, according to Hsiao. “A poorly verified design compromises both the system’s reliability and its security,” he added.

In electronics design, the verification problems have grown so large that the International Technology Roadmap for Semiconductors has reported that “verification engineers significantly outnumber designers” on current projects, increasing costs significantly.

The challenge is in exploring an exponential-sized search space, which in the worst case involves searching all the possible states in the circuit. Since traditional, single perspective approaches are not keeping up with the growing complexity, Hsiao plans to apply intelligence from multiple perspectives at the same time.

His grant from the National Science Foundation will allow him to integrate a swarm intelligence strategy developed in his laboratory with multiple abstract models, parallel processing, and general-purpose graphics processing units (GPUs).

In large and complex search spaces, many of the conventional techniques often encounter tremendous difficulties, he said, “because either the small single abstract model is insufficient or the computational cost of formal/semi-formal learning becomes infeasible.”

The swarm-intelligent framework at the heart of Hsiao’s approach is based on long-term research he has conducted using algorithms that simulate the methods used by ant colonies to find the most efficient route to food sources.

This Ant Colony Optimization method involves employing an automatic stimuli generator on the design to create a database of possible vectors, which are then populated by a swarm of intelligent agents. Like real ants, these intelligent agents deposit a pheromone along their paths that attract other agents. The pheromone evaporates over time, resulting in a reinforcement of the most efficient pathways, allowing for the aggregation of knowledge gained from a large number of agents.

“In this regard, the proposed swarm-intelligent framework emphasizes the effective modeling and learning from collective effort by extracting the intelligence acquired during the search over multiple abstract models,” Hsiao said.

The simulation loops through multiple runs. The branches with the highest fitness values are removed so the system can focus on the rarely visited branches — an elegant way of finding and testing the “hard corners” that can be so hard to verify and validate in a design.

The computational efficiency of this approach “is a vast improvement over other methods, covering a far higher percentage of possible states in far less time.” Hsiao said.

This research should lead to a better understanding of the validation of large, complex designs and help cut the overall cost of the design process. “The success of this project not only will push the envelope on design validation, but will also offer new stimuli generation methods to related areas, such as post-silicon validation and validating trust of hardware,” Hsiao said.

Contact Information
Lynn Nystrom
Director of News
tansy@vt.edu

Lynn Nystrom | newswise
Further information:
http://www.vt.edu

Further reports about: Design Electronics Facing Foundation ants branches colonies developed food sources processing significantly stimuli

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>