Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aircraft Tractors Driven from the Cockpit Save Thousands of Tons of Fuel


A new kind of remotely-controlled towing tractor that contains drive technology from Siemens is an environmentally friendly solution for taking aircraft from the gate to the take-off position.

Until now, airplanes have had to use their own turbines to cover this stretch. However, this is very uneconomical, as taxiing consumes up to one metric ton of fuel, depending on the airplane’s size and the distance covered. It is much more efficient to use a diesel-electric towing tractor that attaches itself to the nose wheel and pulls the airplane to the runway. As a result, an aircraft doesn’t have to turn on its engines until after it arrives at the runway.

TaxiBots are real powerhouses — the narrow-body model has around 500 kilowatts of drive output (approximately 800 hp). The TaxiBot’s driven by electric motors. Siemens supplies the tractors with powertrains. Image: TaxiBot in action at Frankfurt Airport.

After conducting extensive tests, Lufthansa now regularly uses such taxiing robots or TaxiBots at Frankfurt International Airport. According to the airline, the tractors enable it to save around 11,000 metric tons of fuel each year at Frankfurt Airport alone. TaxiBots are the result of a joint project between Siemens, the French TLD Group, Israel Aerospace Industries, and Lufthansa LEOS.

TaxiBots not only cut fuel consumption and emissions, they also reduce the strain on aircraft engines, thus extending their maintenance intervals. In addition, they aren’t as noisy as jet turbines. Current TaxiBots tow narrow-body (i.e. single-aisle) airliners such as the Airbus A320 and the Boeing 737. These tractors create only half as much noise as a taxiing airplane.

Including its own energy consumption, a Narrow-Body TaxiBot can save up to 150 kilograms of fuel on each taxiing mission. Trials with Wide-Body TaxiBots for airliners with two aisles, such as the Airbus A380 and the Boeing 747-400, are scheduled to begin soon at Chateauroux Airport in France. One such TaxiBot can save up to one metric ton of fuel when it tows a wide-body jet, which can weigh up to 600 metric tons.

Tractors Powered by Diesel-Electric Hybrid Drives

TaxiBots are real powerhouses — the narrow-body model has around 500 kilowatts of drive output (approximately 800 hp), while a Wide-Body model generates about 1 megawatt (over 1,350 hp). The TaxiBot’s four wheel pairs — for a Narrow-Bodyvehicle — or six wheel pairs — for a Wide-Bodyvehicle— is driven by electric motors. Every individual wheel of the Wide-Body model has its own drive motor.

Siemens supplies the tractors with powertrains, which consist of generators, electric motors, converters, electronics, and software. Although many of the components are based on those of the ELFA hybrid drive system for buses, they were specially developed or adapted for the needs of TaxiBots, which, among other things, require high torques and short response times.

For safety reasons, the system has a redundant design, which means that two diesel engines drive two generators for electricity production. The converters turn the electricity into a form usable by the electric motors. Depending on the model in question, a tractor can be equipped with either six or 16 converters. Wide-Body TaxiBot systems can even be separated into three pieces in the event of a fault. This ensures that two thirds of the drive system will work. In case of a fault such as a short circuit, the electronics developed by Siemens automatically switch off one third of the drive system.

The wheel module that contains the motors for each wheel pair is also a completely new development. Moreover, Siemens engineers have optimized Wide-Body TaxiBot technology by using permanent-magnet electric motors, which operate even more efficiently than conventional asynchronous machines. What’s more, the motors are completely integrated into the wheel module housings. Another new feature is that a TaxiBot can control the electric motor of each of its wheels separately.

This is an advantage when the vehicle turns in place or travels slowly, for example, because a great deal of force is required to turn the wheels under an airliner’s massive load. To achieve this, the Wide-Body TaxiBot can apply different amounts of force to the two wheels of a pair or drive them in opposite directions.

An important consideration during the development of TaxiBots was that pilots would continue to have sole control over an airplane, as required by law. For example, a tractor would be unable to properly brake a moving airliner weighing hundreds of tons.

When a pilot brakes an airplane via its main landing gear, the TaxiBot responds within 130 milliseconds and brakes as well so that the nose wheel isn’t subject to any strain. A plane’s nose wheel is attached to a TaxiBot by means of a special interface mechanism that registers all of the pilot’s steering and braking maneuvers, which it translates into commands for the tractor’s wheels. The software for controlling the wheels also comes from Siemens.

Norbert Aschenbrenner

Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG

Mr. Florian Martini

Press contact

Siemens AG

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>