Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A major research effort into tomorrow's digital power grids

20.09.2016

How will a future electricity grid manage the demands of induction cooking, charging electric cars and roof-installed solar panels? The answer is Smart Grids, which involves digitisation of the electricity grid. 

The aim of a new research centre called CINELDI (Centre for INtelligent ELectricity DIistribution - to empower the future Smart Grid) is to develop systems as part of tomorrow's adaptable, robust and intelligent energy system.


Gerd Kjølle and Kjell Sand giving a presentation to visiting European journalists in the Smart Grid laboratory in June 2016. Photo: Gry Karin Stimo/SINTEF

The centre is headed by SINTEF Energy Research and will operate for between five and eight years with a budget of about NOK 360 million. The centre will be opened on Wednesday 21 September together with the new NTNU/SINTEF SmartGrid Lab.

Saving money and protecting the environment

"Smart Grids provide output and energy efficiency, and make it easier to exploit renewable energy sources. They can also help towards removing the need to expand existing grid capacity – something which would be unavoidable if Smart Grids hadn't entered the stage", says SINTEF's Gerd Kjølle, who will be heading the CINELDI centre.

Major demands are placed on the electricity grid when we cook our meals on induction hobs and charge up our electric cars at the same time. But Smart Grids enable us, for example, to give the grid operator permission to disconnect consumption linked to water heating, thus avoiding the need to expand grid capacity.

No organisation can introduce Smart Grids alone

The CINELDI research centre is headed by SINTEF Energy Research in close collaboration with NTNU. It also has many research partners in Europe, Japan and the USA.

"No organisation can introduce Smart Grids alone", says Kjølle. "This is why we're involving partners from among the grid companies, system operators, technology manufacturers, member organisations and the pubic authorities", she says.

The new Smart Grid laboratory will enable researchers to simulate real situations arising in power systems of all sizes in a way that has not been possible before.

"We can test new systems developed by technology manufacturers, research projects or students by subjecting them to all magnitudes of interruptions, noise, communication delays and so on", says Kjell Sand, who is Project Manager for the Norwegian Smart Grid laboratory from Norwegian University of Science and Technology, and a member of the CINELDI management team. "Testing will provide us with assurances that the systems can handle situations that they will be exposed to as part of a future smart power system", he says.

Facts: The Centres for Environmentally-Friendly Energy Research (FMEs) represent a focused and long-term research effort in the fields of renewable energy, energy efficiency, CO2 management and the social sciences. SINTEF is heading three of the new FMEs: CINELDI, HighEFF and NCCS. SINTEF is also a participant in five other new FMEs.

http://www.sintef.no/en/projects/cineldi/

Anne Steenstrup-Duch | AlphaGalileo

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>