Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stock Market Models Help NYU Researchers Predict Animal Behavior

13.11.2014

In an unexpected mashup of financial and mechanical engineering, researchers have discovered that the same modeling used to forecast fluctuations in the stock market can be used to predict aspects of animal behavior. Their work proposes an unprecedented model for in silico—or computer-based—simulations of animal behavior. The findings were published in the Journal of the Royal Society Interface.

The team, led by Maurizio Porfiri, professor of mechanical and aerospace engineering and director of the school’s Dynamical Systems Laboratory, is more accustomed to studying the social behavior of zebrafish—a freshwater species often used in experiments due to its genetic similarity to humans. Porfiri has drawn considerable attention for his interdisciplinary research on the factors that influence zebrafish collective behavior.

However, designing procedures and conditions for animal experiments are time-intensive, and despite careful planning, many experiments yield mixed data. Porfiri and his team, comprising postdoctoral fellow Ross P. Anderson, doctoral student Violet Mwaffo, and former postdoctoral fellow Sachit Butail (now assistant professor at Indraprastha Institute of Information Technology Delhi), set out to develop a mathematical model of animal behavior that could predict the outcome or improve the effectiveness of experiments and minimize the number of fish used in them.

When mapping the movement of zebrafish as they swam, Porfiri and his colleagues observed that the species does not move in a continuous pattern; rather, it swims in a signature style characterized by coasting periods followed by sharp turns. As they plotted the turn rate of the fish over time, the researchers noticed that their data, with its small variations followed by large dips (reflecting fast turns), looked very different from the turn rate of other fish but very similar to another type of data, where such volatility is not only common but well studied: the stock market.

The team embraced the mathematical model known as a stochastic jump process, a term used by financial engineers and economists to describe the price jumps of financial assets over time. Using many of the same tools employed in financial analysis, the researchers were able to create a mathematical model of zebrafish swimming, mining video footage from previous experimental sessions to seed what they hope will become a robust database of zebrafish behavior under varying circumstances.

“We realized that if we could simulate the swimming behavior of these fish using a computer, we could test and predict their responses to new stimuli, whether that is the introduction or removal of a shoal mate, the presence of a robotic fish, or even exposure to alcohol,” Porfiri said. “In behavior studies, you can easily utilize thousands of test subjects to explore different variables. This will allow researchers to replace some of that experimentation with computer modeling.”

Porfiri emphasized that this mathematical model of animal behavior will also allow researchers to make better use of their data following experiments, not just beforehand. “The data that result from zebrafish experiments look quite messy initially,” Porfiri said. “Giving researchers a model they can use to compare, filter, and refine their analysis afterwards will allow them to maximize data for better results.”

Porfiri and his team plan to continue to add data to their model with the hope of creating a toolbox that all researchers engaged in this field of study can utilize.

The idea of incorporating financial engineering to model zebrafish behavior came from Mwaffo, now a doctoral student in Porfiri’s lab who had earned his master’s degree in financial engineering from the NYU Polytechnic School of Engineering.

This work was supported by grants from the National Science Foundation. The full paper, “A Jump Persistent Turning Walker to Model Zebrafish Locomotion” is here.


Learn more about: Maurizio Porfiri

Kathleen Hamilton | EurekAlert!
Further information:
http://engineering.nyu.edu/press-release/2014/11/12/stock-market-models-help-nyu-researchers-predict-animal-behavior

More articles from Business and Finance:

nachricht Corporate coworking as a driver of innovation
22.11.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>