Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mathematical confirmation: Rewiring financial networks reduces systemic risk


A proposed tax on systemically risky financial transactions could reduce the risk of financial system crashes by spurring financial networks to reshape in more resilient ways.

A tax on systemically risky transactions could reshape financial networks into a new structure that is less vulnerable to cascading financial system shocks such as the 2008 financial crisis, according to new IIASA research published in the Journal of Economic Dynamics and Control.

This graph shows the distribution of the systemic impact of banks in the simulated network, with no tax (red), a Tobin-like tax (blue) and the SRT (green).

©Leduc & Thurner, 2017

By taxing the transactions that create greater risk of network failure, the tax, known as a Systemic Risk Tax (SRT), would essentially rewire the financial system into a more resilient form.

The SRT was introduced in previous research by IIASA researchers Sebastian Poledna and Stefan Thurner, where they showed its validity on a large-scale agent based simulator. The new research now shows that the idea of the SRT holds much more generally on fundamental mathematical grounds.

“The idea behind this tax is to create incentives for banks to form a more resilient network,” says IIASA researcher Matt Leduc, a study author. In the modern financial system, banks are connected to each other through transactions such as lending and borrowing. In this highly connected system, if one bank fails, this can lead to a cascade of bank failures.

In the current regulatory system there are no real incentives to reduce systemic risk, which means that finance remains vulnerable to future shocks and crises. Even new “Tobin style” transaction taxes that have been proposed and introduced following the 2008 financial crisis do not do much to reduce systemic risk, according to previous research. Leduc explains that this is because such taxes are charged indiscriminately on every transaction, rather than targeting the transactions that increase risk.

“Transaction taxes also tend to reduce transaction volume overall, which is not what you want in the banking system. The fascinating thing about the SRT is that it does not reduce volume, but just re-shapes the network,” says Thurner, a study author. An SRT could rewire the financial network into a new, more resilient structure that could better withstand shocks and bank failures.

The recent findings on the proposed systemic risk tax brings the previous body of work onto a new level, by showing that there exist two equilibria, one is basically free of systemic risk when the SRT is implemented, the other is the situation without SRT where the risk of crises and cascading risk is high, as it is in reality now. This is based on firm mathematical grounds. “We adapted and proved results inspired by the study of ‘matching markets,’ which allows us to capture mathematically the matchmaking processes between lenders and borrowers. With this method we can arrive at networks that are optimally resilient,” says Leduc.

Thurner has previously presented the research to policymakers and central bankers in the EU and Mexico. The new study is essentially one further step from research into policy, but a systemic risk tax still has a long way to go to become reality. In order to implement such a tax, regulators need expansive, up-to-date information about the current state of the interbank network. In fact, this information is already available and accessible to regulators. The bigger question may be how banks would behave in reality under the proposed tax.

“We need to explore how real banks will behave when faced with such a tax, and how they will change their behavior in response. The idea is to make banks aware and responsible for the externalities of systemic risk they are creating. Of course this will create opportunity costs as banks might create systemic risk departments. However, these are negligible costs in comparison to the costs of financial crises, or implementation costs of Basel III, which will effectively not reduce systemic risk,” explains Thurner.

Leduc MV and Thurner S (2017). Incentivizing resilience in financial networks. Journal of Economic Dynamics and Control 82 44-66. []

About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, Europe, and Oceania.

Weitere Informationen:

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis Economic IIASA SRT bank failures financial crisis financial system networks risk systemic

More articles from Business and Finance:

nachricht RWI/ISL-Container Throughput Index ending 2017 on a positive note
24.01.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

nachricht Uncovering decades of questionable investments
18.01.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>