Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How long do firms live? Research finds patterns of company mortality in market data

02.04.2015

It's a simple enough question: how long does a typical business have to live? Economists have been thinking about that one for decades without a particularly clear answer, but new research by scientists at the Santa Fe Institute in New Mexico reveals a surprising insight: publicly-traded firms die off at the same rate regardless of their age or economic sector.

Companies come and go for a variety of reasons. Some are bought, some merge with others, and some go out of business completely. There's no shortage of theories about why.


Sizes of some 30,000 companies traded publicly on US markets from 1950-2009, measured by their sales (controlling for inflation and GDP growth). The relatively rapid growth of smaller companies near the beginnings of their lifespans account for the ragged lower portion of the chart, as well as the relatively steep initial sales increases. As companies reach maturity, their sales tend to level off.

Credit: Marcus Hamilton and Madeleine Daepp

"The theory of the firm--there are whole books on what people think is going on," says Marcus Hamilton, an SFI postdoctoral fellow and corresponding author of a new paper published in the journal Royal Society Interface.

Despite that, he says, "there is remarkably little quantitative work" on what economists call company mortality, and existing theory and evidence yield contradictory answers. Some researchers think younger companies are more likely to die than older ones, while others think just the opposite.

"We wanted to see if there was any kind of standard behavior or if it was just random," Hamilton says.

Hamilton, SFI Distinguished Professor Geoffrey West, and SFI Professor Luis Bettencourt asked Madeleine Daepp, then an Edward A. Knapp Undergraduate Fellow at SFI and first author of the new paper, to take the lead. "We gave her this basic idea, and she did the heavy lifting," Hamilton says. Daepp is now a graduate student at the University of British Columbia.

The heavy lifting, Hamilton explains, was going through Standard and Poor's Compustat, an expansive database of information on publicly-traded companies dating back to 1950. Using a statistical technique called survival analysis, Daepp and her mentors discovered something no one had predicted: a firm's mortality rate -- its risk of dying in, say, the next year -- had nothing to do with how long it had already been in business or what kinds of products it produced.

"It doesn't matter if you're selling bananas, airplanes, or whatever," Hamilton says -- the mortality rate is the same. Though the number, of course, varies from firm to firm, the team estimated that the typical company lasts about ten years before it's bought out, merges, or gets liquidated.

"The next question is, why might that be?" Hamilton says. The new paper largely avoids engaging with any particular economic model, though the researchers have some hypotheses inspired by ecological systems, where plants and animals have their own internal dynamics but must also compete for scarce resources -- just like businesses do.

John German | EurekAlert!

Further reports about: SFI ecological systems heavy lifting mortality mortality rate

More articles from Business and Finance:

nachricht Europe's microtechnology industry is attuned to growth
10.03.2017 | IVAM Fachverband für Mikrotechnik

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>