Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How long do firms live? Research finds patterns of company mortality in market data

02.04.2015

It's a simple enough question: how long does a typical business have to live? Economists have been thinking about that one for decades without a particularly clear answer, but new research by scientists at the Santa Fe Institute in New Mexico reveals a surprising insight: publicly-traded firms die off at the same rate regardless of their age or economic sector.

Companies come and go for a variety of reasons. Some are bought, some merge with others, and some go out of business completely. There's no shortage of theories about why.


Sizes of some 30,000 companies traded publicly on US markets from 1950-2009, measured by their sales (controlling for inflation and GDP growth). The relatively rapid growth of smaller companies near the beginnings of their lifespans account for the ragged lower portion of the chart, as well as the relatively steep initial sales increases. As companies reach maturity, their sales tend to level off.

Credit: Marcus Hamilton and Madeleine Daepp

"The theory of the firm--there are whole books on what people think is going on," says Marcus Hamilton, an SFI postdoctoral fellow and corresponding author of a new paper published in the journal Royal Society Interface.

Despite that, he says, "there is remarkably little quantitative work" on what economists call company mortality, and existing theory and evidence yield contradictory answers. Some researchers think younger companies are more likely to die than older ones, while others think just the opposite.

"We wanted to see if there was any kind of standard behavior or if it was just random," Hamilton says.

Hamilton, SFI Distinguished Professor Geoffrey West, and SFI Professor Luis Bettencourt asked Madeleine Daepp, then an Edward A. Knapp Undergraduate Fellow at SFI and first author of the new paper, to take the lead. "We gave her this basic idea, and she did the heavy lifting," Hamilton says. Daepp is now a graduate student at the University of British Columbia.

The heavy lifting, Hamilton explains, was going through Standard and Poor's Compustat, an expansive database of information on publicly-traded companies dating back to 1950. Using a statistical technique called survival analysis, Daepp and her mentors discovered something no one had predicted: a firm's mortality rate -- its risk of dying in, say, the next year -- had nothing to do with how long it had already been in business or what kinds of products it produced.

"It doesn't matter if you're selling bananas, airplanes, or whatever," Hamilton says -- the mortality rate is the same. Though the number, of course, varies from firm to firm, the team estimated that the typical company lasts about ten years before it's bought out, merges, or gets liquidated.

"The next question is, why might that be?" Hamilton says. The new paper largely avoids engaging with any particular economic model, though the researchers have some hypotheses inspired by ecological systems, where plants and animals have their own internal dynamics but must also compete for scarce resources -- just like businesses do.

John German | EurekAlert!

Further reports about: SFI ecological systems heavy lifting mortality mortality rate

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>