Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winters in Siberian permafrost regions have warmed since millennia

26.01.2015

For the first time, researchers at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have successfully employed a geochemical method used in glacier research to decode climate data from millennia-old permafrost ground ice and reconstruct the development of winter temperatures in Russia’s Lena River Delta. Their conclusions: Over the past 7,000 years, winter temperatures in the Siberian permafrost regions have gradually risen.

The researchers claim that this is due to the changing position of the Earth relative to the sun and is amplified by the rising greenhouse-gas emissions since the dawn of industrialisation. The study will be published as the cover story of the upcoming February issue of the scientific journal Nature Geoscience.


The scientists Alexander Dereviagin, Thomas Opel, and Hanno Meyer (v.l.) are taking ice samples from an ice wedge, which was exposed by wind and waves at the coastline of the Siberian island Muostakh. Foto: Volkmar Kochan/rbb


Lena Delta (summer 2012)

Photo: Volkmar Kochan/rbb

You won’t find any glaciers in Russia’s Lena River Delta. Unlike in Antarctica or Greenland, in the Siberian tundra ice doesn’t form above ground on hillsides or elevated plains. Rather, it forms directly underground as ice wedges.

“Ice wedges are a typical feature of permafrost regions. They are formed when the permanently frozen soil contracts in response to intensively cold winter temperatures, causing it to crack. When the snow melts in spring, the melt water fills these cracks. Since the ground temperature is roughly minus ten degrees Celsius, the water refreezes immediately. If this process repeats itself winter after winter, over the decades and centuries an ice body shaped like a giant wedge is formed,” explains Dr Hanno Meyer, a permafrost researcher at the AWI Potsdam and first author of the study.

With a depth of up to 40 metres and a width of up to six metres, the ice wedges of the Siberian Arctic may not be as physically impressive as Antarctic glaciers. However the ice wedges, some of which are more than 100,000 years old, store climate information in much the same way, allowing scientists to investigate them using glacier research methods.

“The melt water always comes from the snowfall of a single winter. Therefore, when it freezes in these frost cracks, information on the winter temperatures in that specific year is also preserved. We have now succeeded for the first time in using oxygen isotope analysis to access the temperature information stored in the ice and compile it into a climate curve for the past 7,000 years,” states AWI researcher and co-author Dr Thomas Opel.

The new information represents the first well dated winter-temperature data from the Siberian permafrost regions and indicates a clear trend: “Over the past 7,000 years, the winters in the Lena River Delta have steadily warmed – a trend we haven’t seen in almost any other Arctic climate archive,” says Hanno Meyer. As the permafrost expert explains, the likely reason is: “To date, primarily fossilised pollen, diatoms and tree rings from the Arctic have been used to reconstruct the climate of the past. But they mostly record temperature information from the summer, when the plants grow and bloom. Ice wedges are among the few archives that can exclusively record winter data.”

Further, the new data will allow the researchers to fill an important gap: “Most climate models indicate a long-term cooling in the summer and long-term warming in the winter for the Arctic over the past 7,000 years. But until now, there has been no temperature data to support the second claim, essentially because the majority of climate archives record information from the summer. Now we can finally demonstrate that ice wedges contain similar winter-temperature information as predicted by climate models,” says AWI modeller and co-author Dr Thomas Laepple.

At this point, the researchers can’t exactly determine yet how many degrees the Arctic winters have warmed. As Thomas Opel explains, “The results of the oxygen isotope analysis can only tell us whether and how the isotopic composition has changed. If it rises, it indicates a warming. But the exact extent of warming is something we can’t yet make a statement on.”

Nevertheless, the researchers found clear indications for the causes of this warming. According to Hanno Meyer: “The curve shows a clear partitioning. Up to the dawn of industrialisation around 1850, we can attribute the development to changes in the Earth’s position relative to the sun. In other words, the duration and intensity of the solar radiation increased from winter to winter, causing temperatures to rise. But with industrialisation and the strong increase in the emissions of greenhouse gases like carbon dioxide, this was supplemented by the anthropogenic greenhouse effect. Starting at that point, our data curve shows a major increase that clearly differs from the gradual warming in the previous phase.”

In a next step, the researchers will investigate whether the same indicators for a gradual rise in winter temperatures in the Arctic can also be found in other permafrost regions around the globe. As Thomas Opel elaborates: “We already have data from an area 500 kilometres east of the Lena River Delta that supports our findings. But we don’t know how it looks for example in the Canadian Arctic. We suppose the development was similar there, but don’t yet have evidence to back up that assumption.”

The data for the new Lena River Delta temperature curve comes from 42 ice samples, which AWI researchers collected over the course of several expeditions from 13 ice wedges that the river had uncovered during flooding. “For the purposes of the study, we only included samples for which we could clearly determine the age. Fortunately, for ice wedges this is relatively simple as a large number of plant remains and other organic material enters the ground ice during snow melt– and we can use the radiocarbon method to precisely determine the age of this material,” says Hanno Meyer.

The study was supported by the Alfred Wegener Institute, the German Research Foundation and the Initiative and Networking Fund of the Helmholtz Association (grant VG-900NH).

Notes for Editors:
The paper was published today under following title:
Hanno Meyer, Thomas Opel, Thomas Laepple, Alexander Yu Dereviagin, Kirstin Hoffmann und Martin Werner (2015): Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene, Nature Geoscience, Vol 8, DOI: 10.1038/ngeo2349 (Link: http://dx.doi.org/10.1038/ngeo2349)

Your scientific experts at the Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research are:
• Dr Hanno Meyer (tel: +49 (0)331 288-2115; e- mail: Hanno.Meyer(at)awi.de)
• Dr Thomas Opel (E-Mail: Thomas.Opel(at)awi.de)
• Dr Thomas Laepple (tel: +49 (0)331-288- 2159 e-mail: Thomas.Laepple(at)awi.de )
• Dr Martin Werner (tel: +49 (0)471-4831-1882; e-mail: Martin.Werner(at)awi.de)
All of them are available for interviews in German and English.

Your contact in the AWI press office is Sina Löschke (tel: +49 (0) 471 4831-2008; e-mail: medien@awi.de).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (http://www.facebook.com/AlfredWegenerInstitute) In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.


Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>