Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why there was a sudden diversification of species

31.03.2015

Around 540 million years ago there was a sudden diversification of species on earth. Within a short period of time, countless new species evolved almost simultaneously, becoming the predecessors of today's main animal groups. But what caused this rapid evolution? Palaeontologists around the world have been searching for the answer to this question for centuries.

Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now confirmed the existing theories that extreme niche formation and tectonic plate movements are responsible for the development of the wide variety of species. Their findings have recently been published in the renowned journal PNAS*.


Examples of the oldest fossils of shelled animals from the early Cambrian Period.

Image: Lin Na

451 million years ago, an event took place that had a major influence on the evolution of life on earth. This event was the Cambrian explosion, which took place at the beginning of the Cambrian Period over a – from a geological point of view – relatively short period of 5 to 10 million years and saw the evolution of all of the major modern animal groups.

To find out what caused this event, researchers from FAU's Geozentrum Nordbayern evaluated a large database of fossils from the Cambrian Period. They analysed the biological diversity of all known species from this period on a local, regional and global level with the aim of understanding the ecological principles that led to the Cambrian explosion.

The causes? Niche formation and plate tectonics

'We discovered that while the number of species within local ecosystems increased in the early Cambrian Period, this was not the main reason for the evolution of the variety of species on a global level,' says Lin Na from FAU's Chair of Palaeoenvironmental Studies. Instead, the different evolution of different populations was much more important.

This is because as species adapted more and more to their environment their ecological niches became more restricted. This meant that individual populations evolved into new species that were adapted to their environments. Carnivores played an important role in this, as Prof. Dr. Wolfgang Kießling, Chair of Palaeoenvironmental Studies, explains.

'Carnivores kept populations small, preventing too much competition for resources. At the same time, however, they forced species to develop new ways of avoiding being eaten and increasingly sophisticated methods of getting food.'

This biological arms race controlled the variety of species at a local and regional level. However, on a global level there was another factor driving the evolution of species forward: plate tectonics. At the beginning of the Cambrian Period, the supercontinent Pannotia broke apart. From then on, deep oceans separated parts of the land and the different sea creatures evolved separately.

'We saw a significant increase in provincialism. The species composition found in the continents' different old shelf seas became more and more different. This could be the main reason that the total number of species increased so considerably,' says Lin Na.

*Lin Na, Wolfgang Kießling: 'Diversity partitioning during the Cambrian radiation', Proceedings of the National Academy of Sciences (USA). doi: 10.1073/pnas.1424985112

Further information:
Lin Na
lin.na@fau.de

Prof. Dr. Wolfgang Kießling
Phone: +49 9131 8526959
Wolfgang.kiessling@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>