Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Big Dinosaurs Steered Clear of the Tropics

16.06.2015

Wild climate swings – persisting tens of millions of years – were too much for the dinos, University of Utah paleontologist and colleagues discover

For more than 30 million years after dinosaurs first appeared, they remained inexplicably rare near the equator, where only a few small-bodied meat-eating dinosaurs eked out a living. The age-long absence of big plant-eaters at low latitudes is one of the great, unanswered questions about the rise of the dinosaurs.


Victor Leshyk

212 million years ago in what is now northern New Mexico, the landscape was dry and hot with common wildfires. Early dinosaurs such as the carnivorous dinosaur in background were small and rare, whereas other reptiles such as the long-snouted phytosaurs and armored aetosaurs were quite common.

And now the mystery has a solution, according to an international team of scientists who pieced together a remarkably detailed picture of the climate and ecology more than 200 million years ago at Ghost Ranch in northern New Mexico, a site rich with fossils from the Late Triassic Period.

The new findings show that the tropical climate swung wildly with extremes of drought and intense heat. Wildfires swept the landscape during arid regimes and continually reshaped the vegetation available for plant-eating animals.

“Our data suggest it was not a fun place,” says study co-author Randall Irmis, curator of paleontology at the Natural History Museum of Utah and assistant professor at the University of Utah. “It was a time of climate extremes that went back and forth unpredictably and large, warm-blooded dinosaurian herbivores weren’t able to exist nearer to the equator – there was not enough dependable plant food.”

The study, led by geochemist Jessica Whiteside, lecturer at the University of Southampton, is the first to provide a detailed look at the climate and ecology during the emergence of the dinosaurs. The results are important, also, for understanding human-caused climate change. Atmospheric carbon dioxide levels during the Late Triassic were four to six times current levels. “If we continue along our present course, similar conditions in a high-CO2 world may develop, and suppress low-latitude ecosystems,” Irmis says.

The other authors are Sofie Lindström, Ian Glasspool, Morgan Schaller, Maria Dunlavey, Sterling Nesbitt, Nathan Smith and Alan Turner. They report the findings today in the Proceedings of the National Academy of Sciences.

Reconstructing the deep past

The earliest known dinosaur fossils, found in Argentina, date from around 230 million years ago. Within 15 million years, multitudes of species with different diets and body sizes had evolved and were abundant beyond the tropical latitudes. In the tropics, the only dinosaurs present were small carnivores. This pattern persisted for 30 million years after the first dinosaurs appeared.

In the new study, the authors focused on Chinle Formation rocks, which were deposited by rivers and streams between 205 and 215 million years ago at Ghost Ranch (better known to many outside of paleontology as the place where artist Georgia O’Keeffe lived and painted for much of her career). The multi-colored rocks of the Chinle Formation are a common sight on the Colorado Plateau at places such as the Painted Desert at Petrified Forest National Park in Arizona. During the Late Triassic, North America and other land masses of the world were bound together in the supercontinent Pangea. The Ghost Ranch site stood close to the equator at roughly the same latitude as present-day southern India.

The researchers reconstructed the deep past by analyzing several kinds of data: fossils, charcoal left by ancient wildfires, and stable isotopes from organic matter and carbonate nodules that formed in ancient soils. “Each dataset complements the others, and they all point towards similar conditions,” Whiteside says. “I think this is one of the major strengths of our study.”

Fossilized bones, pollen grains and fern spores revealed the types of animals and plants living at different times, marked by layers of sediment. Dinosaurs remained rare among the fossils, accounting for less than 15 percent of vertebrate animal remains. They were outnumbered in diversity, abundance and body size by the reptiles known as Pseudosuchian archosaurs, the lineage that gave rise to crocodiles and alligators.

The sparse dinosaurs consisted mostly of small, carnivorous theropods. Big, long-necked dinosaurs, or sauropodomorphs – already the dominant plant-eaters at higher latitudes – did not exist at the study site or any other low-latitude site in Triassic Pangaea, as far as the fossil record shows.

Abrupt changes in climate left a record in the shifting abundance of different types of pollen and fern spores between sediment layers. Fossilized organic matter from decaying plants provided another window on climate shifts. Changes in the ratio of stable isotopes of carbon in the organic matter bookmarked times when plant productivity declined during extended droughts.

Drought and fire

Wildfire burn temperatures varied drastically, the researchers found, consistent with a fluctuating environment in which the amount of combustible plant matter rose and fell over time. The researchers estimated the intensity of wildfires using bits of charcoal recovered in the sediment layers. The amount of light reflected from the fossil charcoal under a light microscope relates directly to the burn temperature of the wood. The overall picture, the authors say, is that of a climate punctuated by extreme shifts in precipitation in which plant die-offs fueled hotter fires, which in turn killed more plants, damaged soils and increased erosion.

Atmospheric carbon dioxide levels, calculated from stable isotope analyses of soil carbonate and preserved organic matter, rose from about 1,200 parts per million at the base of the section, to about 2,400 parts per million near the top. At these high CO2 concentrations, climate models predict more frequent and more extreme weather fluctuations consistent with the fossil and charcoal evidence.

Continuing shifts between extremes of dry and wet likely prevented the establishment of dinosaur-dominated communities found in the fossil record at higher-latitudes across South America, Europe and southern Africa, where aridity and temperatures were less extreme and humidity was consistently higher. Resource-limited conditions could not support a diverse community of fast-growing, warm-blooded, large dinosaurs, which require a productive and stable environment to thrive.

“The conditions would have been something similar to the arid western United States today, although there would have been trees and smaller plants near streams and rivers and forests during humid times,” says Whiteside. “The fluctuating and harsh climate with widespread wild fires meant that only small two-legged carnivorous dinosaurs, such as Coelophysis, could survive.”

####

The research was funded by grants from the National Science Foundation. Other funding was provided by Richard Salomon Foundation, National Geographic Society Committee for Research & Exploration, University of California Museum of Paleontology, University of Utah, Grainger Foundation, Dyson Foundation, and Field Museum Women's Board – Geocenter Denmark.

Fieldwork was conducted with the permission and support of the Ghost Ranch Conference Center.

Contact Information
-- Randall Irmis, assistant professor and curator of paleontology at the Natural History Museum of Utah – office 801-585-0561, mobile 510-847-5335, irmis@umnh.utah.edu
-- Joe Rojas-Burke, senior science writer – office 801-585-6861, mobile 503-896-1079, joe.rojas@utah.edu
-- Patti Carpenter, Natural History Museum of Utah director of public relations – office 801-585-6369, pcarpenter@nhmu.utah.edu
-- For interview opportunities with lead author Jessica Whiteside, lecturer at the University of Southampton, contact Steven Williams, +44-023-8059-2128, S.Williams@soton.ac.uk

Randall Irmis | newswise
Further information:
http://unews.utah.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>