Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Big Dinosaurs Steered Clear of the Tropics

16.06.2015

Wild climate swings – persisting tens of millions of years – were too much for the dinos, University of Utah paleontologist and colleagues discover

For more than 30 million years after dinosaurs first appeared, they remained inexplicably rare near the equator, where only a few small-bodied meat-eating dinosaurs eked out a living. The age-long absence of big plant-eaters at low latitudes is one of the great, unanswered questions about the rise of the dinosaurs.


Victor Leshyk

212 million years ago in what is now northern New Mexico, the landscape was dry and hot with common wildfires. Early dinosaurs such as the carnivorous dinosaur in background were small and rare, whereas other reptiles such as the long-snouted phytosaurs and armored aetosaurs were quite common.

And now the mystery has a solution, according to an international team of scientists who pieced together a remarkably detailed picture of the climate and ecology more than 200 million years ago at Ghost Ranch in northern New Mexico, a site rich with fossils from the Late Triassic Period.

The new findings show that the tropical climate swung wildly with extremes of drought and intense heat. Wildfires swept the landscape during arid regimes and continually reshaped the vegetation available for plant-eating animals.

“Our data suggest it was not a fun place,” says study co-author Randall Irmis, curator of paleontology at the Natural History Museum of Utah and assistant professor at the University of Utah. “It was a time of climate extremes that went back and forth unpredictably and large, warm-blooded dinosaurian herbivores weren’t able to exist nearer to the equator – there was not enough dependable plant food.”

The study, led by geochemist Jessica Whiteside, lecturer at the University of Southampton, is the first to provide a detailed look at the climate and ecology during the emergence of the dinosaurs. The results are important, also, for understanding human-caused climate change. Atmospheric carbon dioxide levels during the Late Triassic were four to six times current levels. “If we continue along our present course, similar conditions in a high-CO2 world may develop, and suppress low-latitude ecosystems,” Irmis says.

The other authors are Sofie Lindström, Ian Glasspool, Morgan Schaller, Maria Dunlavey, Sterling Nesbitt, Nathan Smith and Alan Turner. They report the findings today in the Proceedings of the National Academy of Sciences.

Reconstructing the deep past

The earliest known dinosaur fossils, found in Argentina, date from around 230 million years ago. Within 15 million years, multitudes of species with different diets and body sizes had evolved and were abundant beyond the tropical latitudes. In the tropics, the only dinosaurs present were small carnivores. This pattern persisted for 30 million years after the first dinosaurs appeared.

In the new study, the authors focused on Chinle Formation rocks, which were deposited by rivers and streams between 205 and 215 million years ago at Ghost Ranch (better known to many outside of paleontology as the place where artist Georgia O’Keeffe lived and painted for much of her career). The multi-colored rocks of the Chinle Formation are a common sight on the Colorado Plateau at places such as the Painted Desert at Petrified Forest National Park in Arizona. During the Late Triassic, North America and other land masses of the world were bound together in the supercontinent Pangea. The Ghost Ranch site stood close to the equator at roughly the same latitude as present-day southern India.

The researchers reconstructed the deep past by analyzing several kinds of data: fossils, charcoal left by ancient wildfires, and stable isotopes from organic matter and carbonate nodules that formed in ancient soils. “Each dataset complements the others, and they all point towards similar conditions,” Whiteside says. “I think this is one of the major strengths of our study.”

Fossilized bones, pollen grains and fern spores revealed the types of animals and plants living at different times, marked by layers of sediment. Dinosaurs remained rare among the fossils, accounting for less than 15 percent of vertebrate animal remains. They were outnumbered in diversity, abundance and body size by the reptiles known as Pseudosuchian archosaurs, the lineage that gave rise to crocodiles and alligators.

The sparse dinosaurs consisted mostly of small, carnivorous theropods. Big, long-necked dinosaurs, or sauropodomorphs – already the dominant plant-eaters at higher latitudes – did not exist at the study site or any other low-latitude site in Triassic Pangaea, as far as the fossil record shows.

Abrupt changes in climate left a record in the shifting abundance of different types of pollen and fern spores between sediment layers. Fossilized organic matter from decaying plants provided another window on climate shifts. Changes in the ratio of stable isotopes of carbon in the organic matter bookmarked times when plant productivity declined during extended droughts.

Drought and fire

Wildfire burn temperatures varied drastically, the researchers found, consistent with a fluctuating environment in which the amount of combustible plant matter rose and fell over time. The researchers estimated the intensity of wildfires using bits of charcoal recovered in the sediment layers. The amount of light reflected from the fossil charcoal under a light microscope relates directly to the burn temperature of the wood. The overall picture, the authors say, is that of a climate punctuated by extreme shifts in precipitation in which plant die-offs fueled hotter fires, which in turn killed more plants, damaged soils and increased erosion.

Atmospheric carbon dioxide levels, calculated from stable isotope analyses of soil carbonate and preserved organic matter, rose from about 1,200 parts per million at the base of the section, to about 2,400 parts per million near the top. At these high CO2 concentrations, climate models predict more frequent and more extreme weather fluctuations consistent with the fossil and charcoal evidence.

Continuing shifts between extremes of dry and wet likely prevented the establishment of dinosaur-dominated communities found in the fossil record at higher-latitudes across South America, Europe and southern Africa, where aridity and temperatures were less extreme and humidity was consistently higher. Resource-limited conditions could not support a diverse community of fast-growing, warm-blooded, large dinosaurs, which require a productive and stable environment to thrive.

“The conditions would have been something similar to the arid western United States today, although there would have been trees and smaller plants near streams and rivers and forests during humid times,” says Whiteside. “The fluctuating and harsh climate with widespread wild fires meant that only small two-legged carnivorous dinosaurs, such as Coelophysis, could survive.”

####

The research was funded by grants from the National Science Foundation. Other funding was provided by Richard Salomon Foundation, National Geographic Society Committee for Research & Exploration, University of California Museum of Paleontology, University of Utah, Grainger Foundation, Dyson Foundation, and Field Museum Women's Board – Geocenter Denmark.

Fieldwork was conducted with the permission and support of the Ghost Ranch Conference Center.

Contact Information
-- Randall Irmis, assistant professor and curator of paleontology at the Natural History Museum of Utah – office 801-585-0561, mobile 510-847-5335, irmis@umnh.utah.edu
-- Joe Rojas-Burke, senior science writer – office 801-585-6861, mobile 503-896-1079, joe.rojas@utah.edu
-- Patti Carpenter, Natural History Museum of Utah director of public relations – office 801-585-6369, pcarpenter@nhmu.utah.edu
-- For interview opportunities with lead author Jessica Whiteside, lecturer at the University of Southampton, contact Steven Williams, +44-023-8059-2128, S.Williams@soton.ac.uk

Randall Irmis | newswise
Further information:
http://unews.utah.edu/

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>