Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why Big Dinosaurs Steered Clear of the Tropics


Wild climate swings – persisting tens of millions of years – were too much for the dinos, University of Utah paleontologist and colleagues discover

For more than 30 million years after dinosaurs first appeared, they remained inexplicably rare near the equator, where only a few small-bodied meat-eating dinosaurs eked out a living. The age-long absence of big plant-eaters at low latitudes is one of the great, unanswered questions about the rise of the dinosaurs.

Victor Leshyk

212 million years ago in what is now northern New Mexico, the landscape was dry and hot with common wildfires. Early dinosaurs such as the carnivorous dinosaur in background were small and rare, whereas other reptiles such as the long-snouted phytosaurs and armored aetosaurs were quite common.

And now the mystery has a solution, according to an international team of scientists who pieced together a remarkably detailed picture of the climate and ecology more than 200 million years ago at Ghost Ranch in northern New Mexico, a site rich with fossils from the Late Triassic Period.

The new findings show that the tropical climate swung wildly with extremes of drought and intense heat. Wildfires swept the landscape during arid regimes and continually reshaped the vegetation available for plant-eating animals.

“Our data suggest it was not a fun place,” says study co-author Randall Irmis, curator of paleontology at the Natural History Museum of Utah and assistant professor at the University of Utah. “It was a time of climate extremes that went back and forth unpredictably and large, warm-blooded dinosaurian herbivores weren’t able to exist nearer to the equator – there was not enough dependable plant food.”

The study, led by geochemist Jessica Whiteside, lecturer at the University of Southampton, is the first to provide a detailed look at the climate and ecology during the emergence of the dinosaurs. The results are important, also, for understanding human-caused climate change. Atmospheric carbon dioxide levels during the Late Triassic were four to six times current levels. “If we continue along our present course, similar conditions in a high-CO2 world may develop, and suppress low-latitude ecosystems,” Irmis says.

The other authors are Sofie Lindström, Ian Glasspool, Morgan Schaller, Maria Dunlavey, Sterling Nesbitt, Nathan Smith and Alan Turner. They report the findings today in the Proceedings of the National Academy of Sciences.

Reconstructing the deep past

The earliest known dinosaur fossils, found in Argentina, date from around 230 million years ago. Within 15 million years, multitudes of species with different diets and body sizes had evolved and were abundant beyond the tropical latitudes. In the tropics, the only dinosaurs present were small carnivores. This pattern persisted for 30 million years after the first dinosaurs appeared.

In the new study, the authors focused on Chinle Formation rocks, which were deposited by rivers and streams between 205 and 215 million years ago at Ghost Ranch (better known to many outside of paleontology as the place where artist Georgia O’Keeffe lived and painted for much of her career). The multi-colored rocks of the Chinle Formation are a common sight on the Colorado Plateau at places such as the Painted Desert at Petrified Forest National Park in Arizona. During the Late Triassic, North America and other land masses of the world were bound together in the supercontinent Pangea. The Ghost Ranch site stood close to the equator at roughly the same latitude as present-day southern India.

The researchers reconstructed the deep past by analyzing several kinds of data: fossils, charcoal left by ancient wildfires, and stable isotopes from organic matter and carbonate nodules that formed in ancient soils. “Each dataset complements the others, and they all point towards similar conditions,” Whiteside says. “I think this is one of the major strengths of our study.”

Fossilized bones, pollen grains and fern spores revealed the types of animals and plants living at different times, marked by layers of sediment. Dinosaurs remained rare among the fossils, accounting for less than 15 percent of vertebrate animal remains. They were outnumbered in diversity, abundance and body size by the reptiles known as Pseudosuchian archosaurs, the lineage that gave rise to crocodiles and alligators.

The sparse dinosaurs consisted mostly of small, carnivorous theropods. Big, long-necked dinosaurs, or sauropodomorphs – already the dominant plant-eaters at higher latitudes – did not exist at the study site or any other low-latitude site in Triassic Pangaea, as far as the fossil record shows.

Abrupt changes in climate left a record in the shifting abundance of different types of pollen and fern spores between sediment layers. Fossilized organic matter from decaying plants provided another window on climate shifts. Changes in the ratio of stable isotopes of carbon in the organic matter bookmarked times when plant productivity declined during extended droughts.

Drought and fire

Wildfire burn temperatures varied drastically, the researchers found, consistent with a fluctuating environment in which the amount of combustible plant matter rose and fell over time. The researchers estimated the intensity of wildfires using bits of charcoal recovered in the sediment layers. The amount of light reflected from the fossil charcoal under a light microscope relates directly to the burn temperature of the wood. The overall picture, the authors say, is that of a climate punctuated by extreme shifts in precipitation in which plant die-offs fueled hotter fires, which in turn killed more plants, damaged soils and increased erosion.

Atmospheric carbon dioxide levels, calculated from stable isotope analyses of soil carbonate and preserved organic matter, rose from about 1,200 parts per million at the base of the section, to about 2,400 parts per million near the top. At these high CO2 concentrations, climate models predict more frequent and more extreme weather fluctuations consistent with the fossil and charcoal evidence.

Continuing shifts between extremes of dry and wet likely prevented the establishment of dinosaur-dominated communities found in the fossil record at higher-latitudes across South America, Europe and southern Africa, where aridity and temperatures were less extreme and humidity was consistently higher. Resource-limited conditions could not support a diverse community of fast-growing, warm-blooded, large dinosaurs, which require a productive and stable environment to thrive.

“The conditions would have been something similar to the arid western United States today, although there would have been trees and smaller plants near streams and rivers and forests during humid times,” says Whiteside. “The fluctuating and harsh climate with widespread wild fires meant that only small two-legged carnivorous dinosaurs, such as Coelophysis, could survive.”


The research was funded by grants from the National Science Foundation. Other funding was provided by Richard Salomon Foundation, National Geographic Society Committee for Research & Exploration, University of California Museum of Paleontology, University of Utah, Grainger Foundation, Dyson Foundation, and Field Museum Women's Board – Geocenter Denmark.

Fieldwork was conducted with the permission and support of the Ghost Ranch Conference Center.

Contact Information
-- Randall Irmis, assistant professor and curator of paleontology at the Natural History Museum of Utah – office 801-585-0561, mobile 510-847-5335,
-- Joe Rojas-Burke, senior science writer – office 801-585-6861, mobile 503-896-1079,
-- Patti Carpenter, Natural History Museum of Utah director of public relations – office 801-585-6369,
-- For interview opportunities with lead author Jessica Whiteside, lecturer at the University of Southampton, contact Steven Williams, +44-023-8059-2128,

Randall Irmis | newswise
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>