Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When sea levels rise, damage costs rise even faster


Damages from extreme events like floods are even more relevant than the mean sea level itself when it comes to the costs of climate impacts for coastal regions. However, while it is now rather well understood how sea-levels will rise in the future, only small progress has been made estimating how the implied damage for cities at the coasts will increase during the next decades. A team of scientists from the Potsdam Institute for Climate Impact Research (PIK) now provides a method to quantify monetary losses from coastal floods under sea-level rise. For the first time, the scientists show that the damage costs consistently increase at a higher rate than the sea-level rise itself.

“When sea levels rise, damage costs rise even faster, our analyses show,” explains Markus Boettle, lead author of the study published in the journal Natural Hazards and the Earth System. Rising sea levels as a major impact of climate change pose a risk for coastal regions – the mean regional sea level rise takes effect by more frequent and more intense coastal flood events.

Flood defense measures can counteract an increasing flood risk. Photo: Thinkstock

“At the same time, the severity of flood impacts is not only determined by environmental factors, but also to a significant extent by human decisions: flood defense measures can counteract the increasing flood risk,” says Boettle. “Our study illustrates that the complexity of climate change, adaptation, and flood damage can be disentangled by surprisingly simple mathematical functions to provide estimates of the average annual costs of sea-level rise over a longer time period.”

The scientists developed a method that translates the occurrence probability of flood events into the probability of inundation damage. Expected regional sea level rise is taken into account by separating two components, namely the increasing number of events and the increasing severity of each one. Moreover, potential flood defense measures like dikes or sea walls can be included into the calculations as they prevent or mitigate damages from storm surges.

+++Flood risks, damages, adaptation+++

Although coastal cities are different around the world and also flood-related threats have their own characteristics at different coasts, the scientists found general results. “Our equations basically work in Mumbai, New York, Hamburg – Pacific, Atlantic, or North Sea. In any location worldwide the same simple and universal expressions hold true," says co-author Jürgen Kropp, deputy chair of PIK research domain Climate Impacts & Vulnerabilities. For an exemplary implementation of their method, the scientists applied it to the city of Copenhagen in Denmark: They found that a moderate mean sea level rise of 11 centimeters until mid-century would in the same period double economic losses in this city, given no action is taken.

“A concise assessment of potential economic consequences is indispensable for appraising the efficiency of adaptation measures,” explains co-author Diego Rybski. “Even when temperatures stabilize, sea levels will continue to rise and shape our coastlines for future generations. So, additional preventive measures need to be considered in addition to the mitigation of greenhouse gas emissions, to help coastal regions especially in transition and developing countries to adapt and to limit damage costs.”

+++A large share of the world population lives in coastal regions+++

Nevertheless, some constraints of the methodology remain, which was developed in the broader context of the European-funded RAMSES project. For instance, extreme events and attributed damages are not evenly distributed in time – there are years without any damage at all and others when quite unlikely floods may occur. The approach cannot forecast single events and associated damages, but estimates damage expectations over longer time-spans. Despite of the lack of knowledge regarding the timing of the extreme events, the statistical spreading of damage over years has been quantified by the researchers.

“A large share of the world population lives in coastal regions,” says Jürgen Kropp, director of the RAMSES project. “In the light of limited funds for adaptation it is an asset to provide comparable cost assessments. While mitigation remains of vital importance to keep climate impacts on a still manageable scale, an adaptation perspective can help to limit damage costs in the right places."

Article: Boettle, M., Rybski, D., Kropp, J.P. (2016): Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage. Natural Hazards and Earth System Sciences.

Weblink to the article once it is published:

Weblink to RAMSES project:

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

nachricht New interactive map shows climate change everywhere in world
22.03.2018 | University of Cincinnati

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>