Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When less is more

01.03.2016

NOAA, CIRES study tracks down lingering source of carbon tetrachloride emissions

Carbon tetrachloride (CCl4) was once commonly used as a cleaning agent and remains an important compound in chemical industry. CCl4 is responsible for that sickly sweet smell associated with dry cleaning solvents from decades ago.


A graphic of the Earth's ozone layer.

Credit: NASA

It's a known air toxin and it eats away at the ozone layer--the gas accounts for about 10-15 percent of the ozone-depleting chemicals in the atmosphere today. As a result, production across the globe has been banned for many years for uses that result in CCl4 escaping to the atmosphere.

Given these stringent limits, the chemical is being released into the air at small rates here in the United States, but a new study reports those rates are still 30 to 100 times higher than amounts reported to emission inventories.That study, led by CIRES scientist Lei Hu and NOAA scientist Stephen Montzka, also suggests that the source of the unexpected emissions in the U.S. appears associated with the production of chlorinated chemicals (such as those ultimately used to create things like Teflon and PVC). The new analysis is published today in the Proceedings of the National Academy of Sciences.

In the 1980s, when scientists discovered that CCl4 was contributing to the destruction of the ozone layer, the synthetic compound was included on a list of substances to be phased out of production. That list, part of the Montreal Protocol on Substances that Deplete the Ozone Layer, required that production for dispersive use (uses that would result in escape to the atmosphere) of CCl4 be discontinued in developed countries by 1996, and in developing countries by 2010.

Despite that phase out, the decline of CCl4 in the atmosphere has been unexpectedly slow. That left many scientists puzzled, including Montzka, who works in NOAA's Earth System Research Laboratory (ESRL) and is also a CIRES Fellow. "We've been scratching our heads, trying to understand why," he said. "When we look at the amounts produced and destroyed, which industry throughout the world has reported to the Ozone Secretariat, we would expect the chemical's global concentration to be decreasing at a rate of nearly 4 percent per year. But it's only decreasing at 1 percent per year. So what's happening?"

To investigate the U.S. contribution, Montzka, Hu and colleagues from NOAA, CIRES, and other scientific institutions studied observations made from NOAA's North American air sampling network. Since the late 2000s, they tracked the composition of the atmosphere from this network of nine tall towers and many more regular aircraft-sampling sites across North America. "We wanted to identify where these emissions were coming from, as well as their magnitude," Hu said.

She and her colleagues considered landfills, where residual amounts of CCl4 might still be leaking from old fire extinguishers or solvent cans, given that CCl4 was used for these purposes in the early to mid-1900s. The team looked at high-density population areas to determine if the use of bleach or chemicals in laundry or swimming pools might be responsible for the emissions they detected. They also checked into industrial sources--and here they had some help.

The Environmental Protection Agency requires industries to report CCl4 emissions. Hu and Montzka were able to compare that information against what they derived from their precise atmospheric measurements of CCl4 concentrations across the country. The analysis of all those data suggests that the CCl4 emissions arise from the same geographic areas as those industries reporting to the EPA. Not a huge surprise, but the amount found was 30 to 100 times higher than what was being reported. The most significant hot spot was the Gulf Coast region, with smaller emissions in Colorado and California.

"We can't tell exactly what the sources of emissions are," said Montzka. "It could be underreporting from known sources, it could be an unknown source, it could be both. It could be some other activity that's geographically tied to the production of chlorinated chemicals and products that hasn't been recognized previously as a significant source."

Hu and Montzka said they hope their work inspires more research, both here in the United States and internationally, to better pin down the precise reasons for excess emissions. The researchers reported in the new paper that the United States has been responsible for about 8 percent of the overall global CCl4 emissions in recent years. If the processes that emit CCl4 in the U.S. also happen in other places, it would go a long way towards explaining the slow rate of decline of CCl4 in the global atmosphere.

"Before this work," said Montzka, "There'd been very little progress on understanding the mystery of continuing global emissions of CCl4. Now we have a better picture, at least in the United States, of where some of those emissions are coming from. That's the first step towards minimizing emissions in the future and speeding up the recovery of the ozone layer."

###

Authors of "Continued emissions of carbon tetrachloride from the U.S. nearly two decades after its phase-out for dispersive uses" are L. Hu (CIRES and NOAA), S. A. Montzka (NOAA), B. R. Miller (CIRES and NOAA), A. E. Andrews (NOAA), J. B. Miller (NOAA) S. J. Lehman (INSTAAR, CU-Boulder), C. Sweeney (CIRES and NOAA), S. Miller (Stanford University), K. Thoning (NOAA), C. Siso (CIRES and NOAA), E. Atlas (University of Miami), D. Blake (University of California Irvine), J. A. de Gouw (CIRES and NOAA), J. B. Gilman (CIRES and NOAA), G. Dutton (NOAA), J. W. Elkins (NOAA), B. D. Hall (NOAA), H. Chen (University of Groningen, the Netherlands), M. L. Fischer (Lawrence Berkeley National Laboratory), M. Mountain (Atmospheric and Environmental Research), T. Nehrkorn (Atmospheric and Environmental Research), S. C. Biraud (Lawrence Berkeley National Laboratory), F. Moore (CIRES and NOAA) and P. P. Tans (NOAA)

CIRES is a partnership of NOAA and CU-Boulder.

Laura Krantz | EurekAlert!

Further reports about: Atmosphere CCl4 CIRES EMISSIONS Environmental Research NOAA ozone ozone layer

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>