Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When less is more

01.03.2016

NOAA, CIRES study tracks down lingering source of carbon tetrachloride emissions

Carbon tetrachloride (CCl4) was once commonly used as a cleaning agent and remains an important compound in chemical industry. CCl4 is responsible for that sickly sweet smell associated with dry cleaning solvents from decades ago.


A graphic of the Earth's ozone layer.

Credit: NASA

It's a known air toxin and it eats away at the ozone layer--the gas accounts for about 10-15 percent of the ozone-depleting chemicals in the atmosphere today. As a result, production across the globe has been banned for many years for uses that result in CCl4 escaping to the atmosphere.

Given these stringent limits, the chemical is being released into the air at small rates here in the United States, but a new study reports those rates are still 30 to 100 times higher than amounts reported to emission inventories.That study, led by CIRES scientist Lei Hu and NOAA scientist Stephen Montzka, also suggests that the source of the unexpected emissions in the U.S. appears associated with the production of chlorinated chemicals (such as those ultimately used to create things like Teflon and PVC). The new analysis is published today in the Proceedings of the National Academy of Sciences.

In the 1980s, when scientists discovered that CCl4 was contributing to the destruction of the ozone layer, the synthetic compound was included on a list of substances to be phased out of production. That list, part of the Montreal Protocol on Substances that Deplete the Ozone Layer, required that production for dispersive use (uses that would result in escape to the atmosphere) of CCl4 be discontinued in developed countries by 1996, and in developing countries by 2010.

Despite that phase out, the decline of CCl4 in the atmosphere has been unexpectedly slow. That left many scientists puzzled, including Montzka, who works in NOAA's Earth System Research Laboratory (ESRL) and is also a CIRES Fellow. "We've been scratching our heads, trying to understand why," he said. "When we look at the amounts produced and destroyed, which industry throughout the world has reported to the Ozone Secretariat, we would expect the chemical's global concentration to be decreasing at a rate of nearly 4 percent per year. But it's only decreasing at 1 percent per year. So what's happening?"

To investigate the U.S. contribution, Montzka, Hu and colleagues from NOAA, CIRES, and other scientific institutions studied observations made from NOAA's North American air sampling network. Since the late 2000s, they tracked the composition of the atmosphere from this network of nine tall towers and many more regular aircraft-sampling sites across North America. "We wanted to identify where these emissions were coming from, as well as their magnitude," Hu said.

She and her colleagues considered landfills, where residual amounts of CCl4 might still be leaking from old fire extinguishers or solvent cans, given that CCl4 was used for these purposes in the early to mid-1900s. The team looked at high-density population areas to determine if the use of bleach or chemicals in laundry or swimming pools might be responsible for the emissions they detected. They also checked into industrial sources--and here they had some help.

The Environmental Protection Agency requires industries to report CCl4 emissions. Hu and Montzka were able to compare that information against what they derived from their precise atmospheric measurements of CCl4 concentrations across the country. The analysis of all those data suggests that the CCl4 emissions arise from the same geographic areas as those industries reporting to the EPA. Not a huge surprise, but the amount found was 30 to 100 times higher than what was being reported. The most significant hot spot was the Gulf Coast region, with smaller emissions in Colorado and California.

"We can't tell exactly what the sources of emissions are," said Montzka. "It could be underreporting from known sources, it could be an unknown source, it could be both. It could be some other activity that's geographically tied to the production of chlorinated chemicals and products that hasn't been recognized previously as a significant source."

Hu and Montzka said they hope their work inspires more research, both here in the United States and internationally, to better pin down the precise reasons for excess emissions. The researchers reported in the new paper that the United States has been responsible for about 8 percent of the overall global CCl4 emissions in recent years. If the processes that emit CCl4 in the U.S. also happen in other places, it would go a long way towards explaining the slow rate of decline of CCl4 in the global atmosphere.

"Before this work," said Montzka, "There'd been very little progress on understanding the mystery of continuing global emissions of CCl4. Now we have a better picture, at least in the United States, of where some of those emissions are coming from. That's the first step towards minimizing emissions in the future and speeding up the recovery of the ozone layer."

###

Authors of "Continued emissions of carbon tetrachloride from the U.S. nearly two decades after its phase-out for dispersive uses" are L. Hu (CIRES and NOAA), S. A. Montzka (NOAA), B. R. Miller (CIRES and NOAA), A. E. Andrews (NOAA), J. B. Miller (NOAA) S. J. Lehman (INSTAAR, CU-Boulder), C. Sweeney (CIRES and NOAA), S. Miller (Stanford University), K. Thoning (NOAA), C. Siso (CIRES and NOAA), E. Atlas (University of Miami), D. Blake (University of California Irvine), J. A. de Gouw (CIRES and NOAA), J. B. Gilman (CIRES and NOAA), G. Dutton (NOAA), J. W. Elkins (NOAA), B. D. Hall (NOAA), H. Chen (University of Groningen, the Netherlands), M. L. Fischer (Lawrence Berkeley National Laboratory), M. Mountain (Atmospheric and Environmental Research), T. Nehrkorn (Atmospheric and Environmental Research), S. C. Biraud (Lawrence Berkeley National Laboratory), F. Moore (CIRES and NOAA) and P. P. Tans (NOAA)

CIRES is a partnership of NOAA and CU-Boulder.

Laura Krantz | EurekAlert!

Further reports about: Atmosphere CCl4 CIRES EMISSIONS Environmental Research NOAA ozone ozone layer

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>