Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-known oxidation mechanism also operative in the atmosphere – with far-reaching effects

10.12.2014

It is already known since 1875 that hydrocarbons can be oxidized by oxygen. Up to now, this so-called “autoxidation process” has been investigated solely in the condensed phase. An international team of scientists with participation of the Leibniz-Instituts für Troposphärenforschung (TROPOS) provided evidence for the importance of this process in the atmosphere as well.

Laboratory experiments have been conducted with latest analytical techniques allowing to discover the reaction mechanism of autoxidation as far as possible. This mechanism describes how hydrocarbons from vegetation are converted to products with up to 12 O-atoms at a time scale of seconds.


Field measurements at the TROPOS station in Melpitz at Leipzig helped to identify the intermediates on the way to the formation of ELVOCs.

Foto: Tilo Arnhold/TROPOS


Laboratory set-up with CI-APi-TOF (chemical ionisation - atmospheric pressure interface – time-of-flight) mass spectrometers for the detection of highly oxidized RO2 radicals end closed-shell product

Foto: Dr. Torsten Berndt/ TROPOS

The resulting, highly oxidized products represent extremely low-volatility compounds effecting particle growth substantially, and subsequently the formation of clouds and the climate system as stated by the scientist from Germany, Finland and from US in the journal Angewandte Chemie. This new insight is useful for a better understanding for the impact of natural emissions for air quality and climate.

Forests emit large amounts of volatile organic compounds (VOC). Alpha-pinene and limonene, the typical flavour of conifer forest, belong to them. Their reaction products form the so-called secondary organic aerosol. In this case, gases are converted to particle constituents. The atmospheric particles are able to reflect solar radiation or act as nuclei for cloud droplets.

These processes have a major influence on climate and are therefore of special scientific interest. However, the corresponding model calculations are very inaccurate at the moment because there are still large gaps in our knowledge concerning the role of natural emissions for the process of particle formation and growth. As long as these processes are poorly understood, it is difficult to give accurate predictions. This uncertainty also affects all climate models.

Large uncertainties do exist especially for the growth of newly formed particles towards cloud nuclei on which water condenses, and thus, initiating the formation of clouds. The particle growth starting from a diameter of about two through to 100 nanometers requires probably low-volatile organic vapors, as has been speculated. These "extremely low-volatility organic compounds (ELVOCs)” have been detected recently and this finding was published in 2014 in the journal NATURE. Latest improvements of measurement techniques made their detection possible.

Potential formation pathways for ELVOCs were very speculative. In the present study scientists from TROPOS and from the University of Helsinki in collaboration with US colleagues solve this mystery as far as possible. Intermediates forming finally ELVOCs were identified as a result of laboratory experiments conducted in the flow tube in TROPOS as well as from field experiments in Melpitz near Leipzig and in Hyytiäla (south Finland).

“Our investigations showed that the most abundant monoterpenes, like alpha-pinene and limonene, produce highly oxidized RO2 radicals with up to 12 O-atoms within a time scale of seconds, and subsequently also the corresponding closed-shell products. The overall process in the atmosphere proceeds in a similar way as the well-known autoxidation in the condensed phase” states Dr. Torsten Berndt from TROPOS. Autoxidation is a chemical process converting slowly substances with the help of oxygen from air under room-temperature conditions. The autoxidation is responsible for a couple of processes, for instance for embrittling of plastics and the spoilage of food.

„Field measurements above the meadows in Melpitz and in the boreal forest in Hyytiäla confirm the finding from laboratory and point to the importance of the autoxidation for the oxidation of hydrocarbons in the atmosphere. Very probably, the highly oxidized RO2 radicals and the corresponding close-shell products have a very low volatility and are crucial for the growth of atmospheric aerosols. Thus, they influence the interactions between aerosols, clouds and the climate”, emphasises Tujia Jokinen from the University of Helsinki. The new findings will help to better assess the effects of vegetation and different land use for climate. As a result, the climate models can be improved, which up to now did not describe particle growth in a proper way.
Tilo Arnhold

Publication:
Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P., Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H. and Berndt, T. (2014): Rapid autoxidation forms highly oxidiced RO2 radicals in the atmosphere. Angewandte Chemie (International Edition). E-pub ahead of print. doi: 10.1002/ange.201408566
http://dx.doi.org/ 10.1002/ange.201408566 
The research was funded by the European Commission, the Academy of Finland and the European Research Council ERC (ATMNUCLE).


Further information:
Dr. Torsten Berndt, Prof. Hartmut Herrmann
Leibniz Institute for Tropospheric Research (TROPOS)
phone +49-341-2717-7032, -7024
http://www.tropos.de/en/institute/departments/chemistry/
http://www.tropos.de/en/institute/about-us/employees/hartmut-herrmann/
and
Tuija Jokinen, Dr. Mikael Kristian Ehn
Universität Helsinki
phone +358-294-151698, -151076
https://tuhat.halvi.helsinki.fi/portal/en/persons/tuija-jokinen%28d67c0c24-6d64-4b49-9e49-83c388955556%29.html
https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html
or
Tilo Arnhold, TROPOS Public Relations
phone +49-341-2717-7060
http://www.tropos.de/en/current-issues/press-releases/

links:
Laboratory investigations on particle formation and early growth at TROPOS:
http://www.tropos.de/en/research/atmospheric-aerosols/process-studies-on-small-spacial-and-temporal-scales/secondary-aerosol-formation/new-particle-formation-nucleation/laboratory-investigations-on-particle-formation-and-early-growth/
TROPOS Research site Melpitz
http://www.tropos.de/en/research/projects-infrastructures-technology/coordinated-observations-and-networks/tropos-research-site-melpitz/
Centre of Excellence in Atmospheric Science – From Molecular and Biological processes to The Global Climate
http://www.atm.helsinki.fi/FCoE/
SMEAR II station of the University of Helsinki in Hyytiäla
http://www.atm.helsinki.fi/SMEAR/index.php/smear-ii

New gas-phase compounds form organic particle ingredients (Press release, 26-Feb-2014)
http://www.tropos.de/en/current-issues/press-releases/details/new-gas-phase-compounds-form-organic-particle-ingredients/
Plants moderate climate warming (Press release, 28-Apr-2013)
http://www.eurekalert.org/pub_releases/2013-04/iifa-pmc042413.php
in German:
http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/
A new atmospherically relevant oxidant of sulphur dioxide - Nature (press release, 08 August 2012):
http://www.colorado.edu/news/releases/2012/08/08/cu-led-team-discovers-new-atmospheric-compound-tied-climate-change-and
in German:
http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

The Leibniz Institute of Tropospheric Research (TROPOS) is member of the Leibniz Society which consists of 89 independent research institutes. Research at these institutes ranges from natural-, engineering- and environmental research to economy, regional and social research to the humanities. Leibniz institutes work on questions relevant to society, economy and ecology. The institutes focus on knowledge- and application-oriented basic research. They operate scientific infrastructure and offer research-based service. The Leibniz society puts focus on knowledge transfer toward policy, science, economy, and the public sector. Leibniz institutes are in intensive cooperation with universities – including the ScienceCampi -, with industry and other partners in Germany and abroad. The institutes undergo high-quality, independent and transparent evaluations. Because of their importance for Germany, the Federal Government and the federal states fund the Leibniz-Society together. The Leibniz-Institutes employ around 17.200 staff, among them are 8.200 scientists. The total annual budget of the institutes is 1.5 Billion Euro.
http://www.leibniz-gemeinschaft.de/en/home/ 

Tilo Arnhold | TROPOS

Further reports about: Atmosphere TROPOS autoxidation climate models clouds mechanism organic compounds

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>