Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather forecasts: Obtaining a better understanding of processes in the atmospheric boundary layer

19.02.2015

The German Meteorological Service sponsors a new professorship at the Goethe University with 1.2 million Euros.

Thunderstorms, wind, fog, extreme rainfall – all these weather events develop in the near-surface layer of air in the earth's atmosphere. Quantifying the processes that occur in this layer using meteorological models is still problematic.

In order to improve its forecasts, over the next four years the German Meteorological Service will be sponsoring a new professorship for boundary layer meteorology at the Goethe University with the amount of 1.2 million euros.

The atmospheric boundary layer, up to one thousand metres thick, can attain altitudes comparable to that of the great Feldberg in the Taunus. This is where the exchange of humidity between the ground and the air occurs, triggering cloud formation, which in turn influences solar radiation.

The enhanced description of the boundary layer in numerical weather forecasting, especially in the corresponding models of the German Meteorological Service, promises more reliable forecasting of extreme weather events such as heavy rainfall. At the same time, it could also provide more precise predictions of near-ground winds and solar radiation for wind farms and solar facilities.

"Without a good description of the atmospheric boundary layer, an accurate weather forecast is impossible", explains Prof. Ulrich Achatz of the Institute for Atmosphere and Environment at the Goethe University. It is particularly difficult to describe the boundary layer at night. During the day the ground is warmed up by solar radiation.

The associated drop in temperature from the ground up to greater atmospheric altitudes promotes the formation of turbulence that can be described relatively well. At night, the near-ground temperatures drop while the boundary layer is stabilised and experiences a complex interaction between turbulence and atmospheric waves. This is not taken sufficiently into consideration in the weather forecast programmes currently in use.

Along with the professorship, the positions of a post-doctoral fellow and two doctoral candidates are being sponsored by the Hans Ertel Centre of the German Meteorological Service (DWD), which is assigning one of its own staff members to work at the university for the duration of the sponsorship.

With this programme, which goes into its second sponsorship phase in 2015, the DWD is establishing research collaborations with German universities that are relevant for its own work. At the Goethe University, the new research field of boundary layer meteorology is being integrated into the course studies for the Bachelor's and Master's Programmes for Meteorology.

Information: Prof. Ulrich Achatz, Institute for Atmosphere and Environment, Phone +49 (0)69 798-40243, achatz@iau.uni-frankfurt.de

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main
Editor: Dr. Anne Hardy, Officer for Science Communication, Phone +49(0)69 798-12498, Fax +49(0)69 798-761 12531, hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>