Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017

Currently terrestrial ecosystems absorb about one quarter of the anthropogenic carbon dioxide emitted into the atmosphere. However, how this land carbon sink will develop in the future is uncertain and strongly depends on the responses of ecosystems to climate. New clues on how the land carbon sink is regulated have now been revealed by researchers led by the Max Planck Institute for Biogeochemistry in Jena, Germany: When looking at the global scale, the annual carbon balance largely responds to temperature, while locally water availability turns out to be the dominant factor.

Their study also highlights that compensation effects of water availability lead to the differences seen between local and global scales.


Extreme dry periods alternating with rainy seasons characterize the savanna ecosystem, like this one in East Africa.

Picture author: Ulla Trampert /pixelio.de

Current climate change is characterized by rising atmospheric carbon dioxide (CO₂) concentrations and concomitant atmospheric warming. However, the annual growth rate of CO₂ which has been measured in the atmosphere for several decades varies largely from year to year. These variations originate primarily from fluctuations in carbon uptake by land ecosystems, rather than by oceans or from alterations in anthropogenic emissions.

How is this carbon sink controlled, and how will it develop in the future? Discussions on whether temperature or water availability is driving the strength of the land carbon sink, and thus its variations, have been highly controversial. According to current knowledge, the year-to-year changes of the carbon balance seem to be related to tropical temperature when looking at the global scale. However, other studies find that the largest carbon balance variability is seen in wide-spread water-limited regions.

This apparent discrepancy has now been explained by an international expert team led by the Max Planck Institute for Biogeochemistry in Jena, Germany. In a systematic modelling approach, Jung and his colleagues applied empirical and process-based models, to analyze from small areas up to the global surface the effect of temperature and water availability variations on carbon exchange between the atmosphere and the terrestrial biosphere.

At local scales, water availability is the dominant cause of the year-to-year variability of both CO₂ uptake in plants by photosynthesis, measured as gross primary productivity (GPP), and CO₂ release from plants and microbes, measured as terrestrial ecosystem respiration (TER).

In sum, the net ecosystem exchange of CO₂ between the atmosphere and the terrestrial biosphere, termed NEE, is also determined by water availability. However, at the global scale, variability in the temporal net exchange is mostly driven by temperature fluctuations. How can these apparently contradictory results be explained?

“What looks quite paradox at a first view, can be illustrated by looking close at the different spatial and temporal variations of the biosphere-atmosphere interactions”, explains Dr. Martin Jung, lead author of the Nature publication. “There are two compensatory effects of water availability: first, at the local scale, temporal water-driven GPP and TER variations compensate each other.”

E.g., very dry weather conditions lead to diminished water availability and concomitantly reduced photosynthetic CO₂ fixation, but also to reduced amounts of respired CO₂. In sum, the effects partially compensate each other. “In addition, on a global scale, anomalies of water availability also compensate in space” adds Jung. “If it is very dry in one part of the world, it is often very wet in another region, thus globally water-controlled anomalies in net carbon exchange outweigh in space.”

Besides shedding light on previously contradictory findings, the outcome also points to the need for a research focus on how climate variables change while scanning across different scales and under global warming conditions.

“The simple relationship between the temperature and the global land carbon sink should be treated with caution, and not be used to infer ecological processes and long-term predictions” adds Dr. Reichstein, head of the Department. With continuous global warming, the scientists expect the changing water cycle to become the critical factor for the variability in the global land carbon sink.


Original publication
Jung, M. et al. (2017). Compensatory water effects link yearly global land CO₂ sink changes to tem-perature
doi: 10.1038/nature20780

Contact:
Dr. Martin Jung
E-Mail: mjung@bgc-jena.mpg.de
Phone: +49 (0)3641- 57 6261

Prof. Dr. Markus Reichstein
E-Mail: mreichstein@bgc-jena.mpg.de
Phone: +49 (0)3641- 57 6200

Susanne Héjja | Max-Planck-Institut für Biogeochemie
Further information:
http://www.bgc-jena.mpg.de

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>