Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm nights could flood the atmosphere with carbon under climate change

08.12.2015

The warming effects of climate change usually conjure up ideas of parched and barren landscapes broiling in a blazing sun, its heat amplified by greenhouse gases. But a study led by Princeton University researchers suggests that hotter nights may actually wield much greater influence over the planet's atmosphere as global temperatures rise -- and could eventually lead to more carbon flooding the atmosphere.

Since measurements began in 1959, nighttime temperatures in the tropics have had a strong influence over year-to-year shifts in the land's carbon-storage capacity, or "sink," the researchers report in the journal Proceedings of the National Academy of Sciences. Earth's ecosystems absorb about a quarter of carbon from the atmosphere, and tropical forests account for about one-third of land-based plant productivity.


A study led by Princeton University researchers suggests that hotter nights may wield more influence than previously thought over the planet's atmosphere as global temperatures rise -- and could eventually lead to more carbon flooding the atmosphere. The researchers determined that warm nighttime temperatures, specifically in the tropics, lead plants to release more carbon through a process known as respiration. Average nighttime temperatures in tropical regions such as Manaus, Brazil, (above) have risen by 0.6 degrees Celsius since 1959. Further temperature increases risk turning Earth's land-based carbon-storage capacity, or sink, into a carbon source.

Credit: William Anderegg, Princeton Environmental Institute.

During the past 50 years, the land-based carbon sink's "interannual variability" has grown by 50 to 100 percent, the researchers found. The researchers used climate- and satellite-imaging data to determine which of various climate factors -- including rainfall, drought and daytime temperatures -- had the most effect on the carbon sink's swings. They found the strongest association with variations in tropical nighttime temperatures, which have risen by about 0.6 degrees Celsius (33 degrees Fahrenheit) since 1959.

First author William Anderegg, an associate research scholar in the Princeton Environmental Institute, explained that he and his colleagues determined that warm nighttime temperatures lead plants to put more carbon into the atmosphere through a process known as respiration.

Just as warm nights make people more active, so too does it for plants. Although plants take up carbon dioxide from the atmosphere, they also internally consume sugars to stay alive. That process, known as respiration, produces carbon dioxide, which plants step up in warm weather, Anderegg said. The researchers found that yearly variations in the carbon sink strongly correlated with variations in plant respiration.

"When you heat up a system, biological processes tend to increase," Anderegg said. "At hotter temperatures, plant respiration rates go up and this is what's happening during hot nights. Plants lose a lot more carbon than they would during cooler nights."

Previous research has shown that nighttime temperatures have risen significantly faster as a result of climate change than daytime temperatures, Anderegg said. This means that in future climate scenarios respiration rates could increase to the point that the land is putting more carbon into the atmosphere than it's taking out of it, "which would be disastrous," he said.

Of course, plants consume carbon dioxide as a part of photosynthesis, during which they convert sunlight into energy. While photosynthesis also is sensitive to rises in temperature, it only happens during the day, whereas respiration occurs at all hours and thus is more sensitive to nighttime warming, Anderegg said.

"Nighttime temperatures have been increasing faster than daytime temperatures and will continue to rise faster," Anderegg said. "This suggests that tropical ecosystems might be more vulnerable to climate change than previously thought, risking crossing the threshold from a carbon sink to a carbon source. But there's certainly potential for plants to acclimate their respiration rates and that's an area that needs future study."

###

This research was supported by the National Science Foundation MacroSystems Biology Grant (EF-1340270), RAPID Grant (DEB-1249256) and EAGER Grant (1550932); and a National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change postdoctoral fellowship administered by the University Corporation of Atmospheric Research.

William R. L. Anderegg, Ashley P. Ballantyne, W. Kolby Smith, Joseph Majkut, Sam Rabin, Claudie Beaulieu, Richard Birdsey, John P. Dunne, Richard A. Houghton, Ranga B. Myneni, Yude Pan, Jorge L. Sarmiento,? Nathan Serota, Elena Shevliakova, Pieter Tan and Stephen W. Pacala. " Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink." Proceedings of the National Academy of Sciences, published online in-advance of print Dec. 7 2015. DOI: 10.1073/pnas.1521479112

Media Contact

Morgan Kelly
mgnkelly@princeton.edu
609-258-5729

 @Princeton

http://www.princeton.edu 

Morgan Kelly | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>