Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wandering greenhouse gas

16.03.2018

Climate models need to take into account the interaction between methane, the Arctic Ocean and ice

On the seafloor of the shallow coastal regions north of Siberia, microorganisms produce methane when they break down plant remains. If this greenhouse gas finds its way into the water, it can also become trapped in the sea ice that forms in these coastal waters.


German scientists from the area of biogeochemistry from the Alfred Wegener Institute at work. On a small area on which they drill through the ice with a hollow borer, they take ice cores and sawed them into short pieces, representing the layers of the ice surface to the bottom. These migrate well documented in bags and are analyzed on the ship by different groups. After thawing, a core is filtered to determine the amount of ice algae, for example. (Photo: Stefan Hendricks)

As a result, the gas can be transported thousands of kilometres across the Arctic Ocean and released in a completely different region months later. This phenomenon is the subject of an article by researchers from the Alfred Wegener Institute, published in the current issue of the online journal Scientific Reports. Although this interaction between methane, ocean and ice has a significant influence on climate change, to date it has not been reflected in climate models.

In August 2011, the icebreaker Polarstern from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) was making its way through the ice-covered Arctic Ocean, on a course that took her just a few hundred kilometres from the North Pole.

Back then, AWI geochemist Dr Ellen Damm tested the waters of the High North for the greenhouse gas methane. In an expedition to the same region four years later, she had the chance to compare the measurements taken at different times, and found significantly less methane in the water samples.

Ellen Damm, together with Dr Dorothea Bauch from the GEOMAR Helmholtz Centre for Ocean Research in Kiel and other colleagues, analysed the samples to determine the regional levels of methane, and the sources. By measuring the oxygen isotopes in the sea ice, the scientists were able to deduce where and when the ice was formed. To do so, they had also taken sea-ice samples.

Their findings: the ice transports the methane across the Arctic Ocean. And it appears to do so differently every year, as the two researchers and their colleagues from the AWI, the Finnish Meteorological Institute in Helsinki and the Russian Academy of Science in Moscow relate in the online journal Scientific Reports.

The samples from 2011 came from sea ice that had started its long journey north in the coastal waters of the Laptev Sea of eastern Siberia nearly two years earlier, in October 2009. The samples from 2015, which had only been underway in the Arctic Ocean half as long, showed a markedly lower level of the greenhouse gas. The analysis revealed that this ice was formed much farther out, in the deeper ocean waters. However, until now, the climate researchers’ models haven’t taken into consideration the interaction between methane, the Arctic Ocean and the ice floating on it.

Every molecule of methane in the air has 25 times the effect on temperature rise compared to a molecule of carbon dioxide released into the atmosphere by burning coal, oil or gas. Methane in the Arctic also has an enormous impact on warming at northerly latitudes, and further exacerbates global warming – a good reason to investigate the methane cycle in the High North more closely.

Methane is produced by cattle breeding and rice cultivation, as well as various other natural processes. For example, the remains of algae and other plant materials collect on the floor of the shallow Laptev Sea, and in other shallow waters off the Arctic coast. If there is no oxygen there, microorganisms break down this biomass, producing methane. To date, simulations have paid too little attention to the routes of by carbon and release of methane from the Arctic regions.

In autumn, when air temperatures drop, many areas of open water also begin to cool. “Sea ice forms on the surface of the Russian shelf seas, and is then driven north by the strong winds,” explains AWI sea-ice physicist Dr Thomas Krumpen, who also took part in the study. The ice formation and offshore winds produce strong currents in these shallow marginal seas, which stir up the sediment and carry the methane produced there into the water column. The methane can also be trapped in the ice that rapidly forms in these open areas of water – also known as polynya – in the winter.

“As more seawater freezes it can expel the brine contained within, entraining large quantities of the methane locked in the ice,” explains AWI researcher Ellen Damm. As a result, a water-layer is formed beneath the ice that contains large amounts of both salt and methane. Yet the ice on the surface and the dense saltwater below, together with the greenhouse gas it contains, are all pushed on by the wind and currents. According to Thomas Krumpen, “It takes about two and a half years for the ice formed along the coast of the Laptev Sea to be carried across the Arctic Ocean and past the North Pole into the Fram Strait between the east cost of Greenland and Svalbard.” Needless to say, the methane trapped in the ice and the underlying saltwater is along for the ride.

The rising temperatures produced by climate change are increasingly melting this ice. Both the area of water covered by sea ice and the thickness of the ice have been decreasing in recent years, and thinner ice is blown farther and faster by the wind. “In the past few years, we’ve observed that ice is carried across the Arctic Ocean faster and faster,” confirms Thomas Krumpen. And this process naturally means major changes in the Arctic’s methane turnover. Accordingly, quantifying the sources, sinks and transport routes of methane in the Arctic continues to represent a considerable challenge for the scientific community.

Original Publication:
Damm, E., Bauch, D., Krumpen, T., Rabe, B., Korhonen, M., Vinogradova, E. and Uhlig, C.: “The Transpolar Drift conveys methane from the Siberian Shelf to the central Arctic Ocean”. Scientific Reports 2018. DOI: 10.1038/s41598-018-22801-z (https://www.nature.com/articles/s41598-018-22801-z)

Notes for Editors

Printable images are available at: https://www.awi.de/nc/en/about-us/service/press/press-release/wandering-greenhou...

Your scientific contact persons are:

Dr Ellen Damm, tel. +49 (0)471 4831-1423 (e-mail: Ellen.Damm(at)awi.de); today (Friday, 16 March) at tel. +49 (0)331 288 20109

Dr Thomas Krumpen, tel. +49 (0)471 4831-1753 (e-mail: Thomas.Krumpen(at)awi.de)

Your contact person at the Dept. of Communications and Media Relations is Dr Folke Mehrtens. tel. +49 (0)471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>