Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Volcanoes get quiet before they erupt!


When dormant volcanoes are about to erupt, they show some predictive characteristics--seismic activity beneath the volcano starts to increase, gas escapes through the vent, or the surrounding ground starts to deform. However, until now, there has not been a way to forecast eruptions of more restless volcanoes because of the constant seismic activity and gas and steam emissions.

Carnegie volcanologist Diana Roman, working with a team of scientists from Penn State, Oxford University, the University of Iceland, and INETER* has shown that periods of seismic quiet occur immediately before eruptions and can thus be used to forecast an impending eruption for restless volcanoes.

The Tilca volcano in Nicaragua is erupting.

Credit: Diana Roman

The duration of the silence can indicate the level of energy that will be released when eruption occurs. Longer quiet periods mean a bigger bang. The research is published in Earth and Planetary Science Letters.

The team monitored a sequence of eruptions at the Telica Volcano in Nicaragua in 2011. It is a so-called stratovolcano, with a classic-looking cone built up by many layers of lava and ash. They started monitoring Telica in 2009 with various instruments and by 2011 they had a comprehensive network within 2.5 miles (4 kilometers) of the volcano's summit.

The 2011 eruptive event was a month-long series of small to moderate ash explosions. Prior to the eruption, there was a lack of deep seismicity or deformation, and small changes in sulfur dioxide gas emissions, indicating that the eruption was not driven by fresh magma. Instead, the eruption likely resulted from the vents being sealed off so that gas could not escape. This resulted in an increase in the pressure that eventually caused the explosions.

Of the 50 explosions that occurred, 35 had preceding quiet periods lasting 30 minutes or longer. Thirteen explosions were preceded by quiet intervals of at least five minutes. Only two of the 50 did not have any quiet period preceding the explosion.

"It is the proverbial calm before the storm," remarked Roman. "The icing on the cake is that we could also use these quiet periods to forecast the amount of energy released."

The researchers did a "hindsight" analysis of the energy released. They found that the longer the quiet phase preceding an explosion, the more energy was released in the ensuing explosion. The quiet periods ranged from 6 minutes before an explosion to over 10 hours (619 minutes) for the largest explosion.

The researchers were also able to forecast a minimum energy for impending explosions based on the data from the previous quiet/explosion pairs and the duration of the particular quiet period being analyzed. The correlation between duration of quiet periods and amount of energy released is tied to the duration of the gas pathways being blocked. The longer the blockage, the more pressure builds up resulting in more energy released. Sealing might be occurring due to mineral precipitation in cracks that previously acted as gas pathways, or due to the settling of the rock near the volcano's surface.

"What is clear is that this method of careful monitoring of Telica or other similar volcanoes in real time could be used for short-term forecasts of eruptions," Roman said. "Similar observations of this phenomenon have been noted anecdotally elsewhere. Our work has now quantified that quiet periods can be used for eruption forecasts and that longer quiet periods at recently active volcanoes could indicate a higher risk of energetic eruptions."


*The paper's other authors are Mel Rodgers of Oxford University, Peter LaFemina of Penn State University, Halldor Geirsson of the University of Iceland, and Virginia Tenorio of the Instituto Nicaraguense de Estudios Territoriales.

This work was supported by the National Science Foundation and the Nicaraguan Institute of Earth Sciences (INETER).

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Diana Roman | EurekAlert!

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>